Archive for Rational Mechanics and Analysis

, Volume 84, Issue 3, pp 249–291 | Cite as

Steady solutions of the Boltzmann equation for a gas flow past an obstacle, I. Existence

  • Seiji Ukai
  • Kiyoshi Asano
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asano, K.; On the initial boundary value problem of the nonlinear Boltzmann equation in an exterior domain, (to appear).Google Scholar
  2. 2.
    Bergh, J., & J. Löfström; “Interpolation Spaces, An Introduction”, Springer-Verlag, Berlin, Heidelberg, New York 1976.Google Scholar
  3. 3.
    Brezis, H., & G. Stampacchia; The hodograph method in fluid dynamics in the light of variational inequalities, Arch. Rational Mech. Anal., 61, 1–18 (1976).Google Scholar
  4. 4.
    Carleman, T.; “Problèmes Mathématiques dans la Théorie Cinétique des Gaz”, Almquist & Wiksell, Uppsala, 1957.Google Scholar
  5. 5.
    Ellis, R. S., & M. A. Pinsky; The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures et Appl., 54, 125–156 (1975).Google Scholar
  6. 6.
    Giraud, J. P.; An H theorem for a gas of rigid spheres, Théories Cinétiques Classiques et Relativistes, C. N. R. S. Paris (1975).Google Scholar
  7. 7.
    Grad, H.; Asymptotic theory of the Boltzmann equation, Rarefied Gas Dynamics, I (J. A. Laurman, ed.), Academic Press, New York, 1963.Google Scholar
  8. 8.
    Grad, H.; Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl. Math., 17 (R. Finn, ed.), 154–183, Amer. Math. Soc., Providence, 1965.Google Scholar
  9. 9.
    Kaniel, S., & M. Shinbrot; The Boltzmann equation I, Comm. Math. Phys., 57, 1–20 (1978).Google Scholar
  10. 10.
    Kato, T.; “Perturbation Theory of Linear Operators”, 1st Ed., Springer-Verlag, Berlin, Heidelberg, New York, 1966.Google Scholar
  11. 11.
    Matsumura, A., & T. Nishida; Global solutions to the initial boundary value problem for the equation of compressible, viscous and heat conductive fluids, to appear.Google Scholar
  12. 12.
    Morawetz, C.; Mixed equations and transonic flows, Rend. Math., 25, 482–509 (1966).Google Scholar
  13. 13.
    Shizuta, Y. (private communication).Google Scholar
  14. 14.
    Ukai, S., & K. Asano; On the initial boundary value problem of the linearized Boltzmann equation in an exterior domain, Proc. Japan Acad., 56, 12–17 (1980).Google Scholar
  15. 15.
    Ukai, S., & K. Asano; On the existence and stability of stationary solutions of the Boltzmann equation for a gas flow past an obstacle, Research Notes in Mathematics, Pitman, 60, 350–364 (1982).Google Scholar
  16. 16.
    Ukai, S., & K. Asano; Stationary solutions of the Boltzmann equation for a gas flow past an obstacle, II. Stability, preprint.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1983

Authors and Affiliations

  • Seiji Ukai
    • 1
    • 2
  • Kiyoshi Asano
    • 1
    • 2
  1. 1.Department of Applied PhysicsOsaka City UniversityUSA
  2. 2.Institute of Mathematics Yoshida College Kyoto UniversityUSA

Personalised recommendations