Archive for Rational Mechanics and Analysis

, Volume 105, Issue 4, pp 299–326

Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence

  • Avner Friedman
  • Michael Vogelius
Article

Abstract

We consider an electrostatic problem for a conductor consisting of finitely many small inhomogeneities of extreme conductivity, embedded in a spatially varying reference medium. Firstly we establish an asymptotic formula for the voltage potential in terms of the reference voltage potential, the location of the inhomogeneities and their geometry. Secondly we use this representation formula to prove a Lipschitz-continuous dependence estimate for the corresponding inverse problem. This estimate bounds the difference in the location and in certain geometric properties of two sets of inhomogeneities by the difference in the boundary voltage potentials corresponding to a fixed current distribution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alessandrini, An identification problem for an elliptic equation in two variables, Univ. of Florence, Technical Report, 1986.Google Scholar
  2. 2.
    G. Alessandrini, Stable determination of conductivity by boundary measurements, IMA Tech. Report, 1987.Google Scholar
  3. 3.
    N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations and inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249.Google Scholar
  4. 4.
    D. C. Barber & B. H. Brown, Recent developments in Applied Potential Tomography—APT. In Information Processing in Medical Imaging, ed. S. L. Bacharach, 106–121. Nijhoff 1986.Google Scholar
  5. 5.
    H. Bellout & A. Friedman, Identification problem in potential theory, Archive Rational Mech. Anal., 101 (1988), 143–160.Google Scholar
  6. 6.
    Proceedings of the EEC workshop on electrical impedance imaging, Sheffield, England, 1986. B. H. Brown editor.Google Scholar
  7. 7.
    H. O. Cordes, Über die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorhaben, Nachr. Akad. Wiss. Goettingen Math.-Phys. Kl. IIa (1956), 239–258.Google Scholar
  8. 8.
    A. Friedman, Detection of mines by electric measurements, SIAM J. Appl. Math. 47 (1987), 201–212.Google Scholar
  9. 9.
    A. Friedman, & B. Gustafsson, Identification of the conductivity coefficient in an elliptic equation, SIAM J. Math. Anal., 18 (1987), 777–787.Google Scholar
  10. 10.
    D. G. Gisser, D. Isaacson & J. C. Newell, Electric current computet tomography and eigenvalues I, Preprint, 1987.Google Scholar
  11. 11.
    R. E. Kleinman & T. B. A. Seniop, Rayleigh Scattering. Chap. 1 in, “Low and High Frequency Asymptotics”, V.K. Varadan and V. V. Varadan, Eds. Elsevier Science Publishers, 1986.Google Scholar
  12. 12.
    R. Kohn & M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), 289–298.Google Scholar
  13. 13.
    R. Kohn & M. Vogelius, Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math. 38 (1985), 643–667.Google Scholar
  14. 14.
    R. Kohn & M. Vogelius, in preparation.Google Scholar
  15. 15.
    I.-J. Lee, Determining conductivity by boundary measurements: some numerical results, Univ. of Maryland Tech. Report, 1988.Google Scholar
  16. 16.
    N. G. Meyers & J. Serrin, The exterior Dirichlet problem for second order elliptic partial differential equations, J. Math. Mech. 9 (1960), 513–538.Google Scholar
  17. 17.
    K. Miller, Stabilized numerical analytic prolongation with poles, SIAM J. Appl. Math. 18 (1970), 346–363.Google Scholar
  18. 18.
    S. Ozawa, Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo, Sect. IA 30 (1983), pp. 259–277.Google Scholar
  19. 19.
    M. Schiffer & G. Szegö, Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949), pp. 130–205.Google Scholar
  20. 20.
    J. Sylvester & G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), 91–112.Google Scholar
  21. 21.
    J. Sylvester & G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Math. 125 (1987), 153–169.Google Scholar
  22. 22.
    J. Sylvester & G. Uhlmann, Inverse boundary value problems at the boundary —continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197–219.Google Scholar
  23. 23.
    A. Wexler, B. Fry & M. R. Neumann, Impedance-computed tomography algorithm and system, Appl. Optics 24 (1985), 3985–3992.Google Scholar
  24. 24.
    T. J. Yorkey, J. G. Webster & W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomedical Eng. BME-34 (1987), 843–852.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Avner Friedman
    • 1
    • 2
  • Michael Vogelius
    • 1
    • 2
  1. 1.Institute for Mathematics and its ApplicationsUniversity of MinnesotaMinneapolis
  2. 2.Department of MathematicsUniversity of MarylandCollege Park

Personalised recommendations