Archive for Rational Mechanics and Analysis

, Volume 61, Issue 3, pp 197–251 | Cite as

Block generalized inverses

  • Robert E. Hartwig


The existence of the Moore-Penrose inverse is discussed for elements of a *-regular ring R. A technique is developed for computing conditional and reflexive inverses for matrices in R2×2, which is then used to calculate the Moore-Penrose inverse for these matrices. Several applications are given, generalizing many of the classical results; in particular, we shall emphasize the cases of bordered matrices, Schur complements, block-rank formulae and EP elements.


Neural Network Complex System Nonlinear Dynamics Electromagnetism Classical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer, C.D., Generalised inverses and ranks of block matrices, SIAM J. Appl. Math. 25, 597–602 (1973).Google Scholar
  2. 2.
    Rohde, C.A., Generalized inverses of partitioned matrices. SIAM J. Appl. Math. 13, 1033–1035 (1965).Google Scholar
  3. 3.
    Burns, F., D. Carlson, E. Haynsworth, & T. Markham, Generalized inverse formulas using the Schur-complement. SIAM J. Appl. Math. 26, 254–259 (1974).Google Scholar
  4. 4.
    Brown, B., & N.H. McCoy, The maximal regular ideal of a ring. Proc. Amer. Math. Soc. 1, 165–171 (1950).Google Scholar
  5. 5.
    Meyer, C.D., & R.J. Painter, Note on least square inverse for a matrix. J. Assoc. Comput. Math. 17, 110–112 (1970).Google Scholar
  6. 6.
    Meyer, C.D., Representations for (1) and (1, 2) inverses for partitioned matrices. Lin. Alg. Appl. 4, 221–232 (1971).Google Scholar
  7. 7.
    Drazin, M.P., Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly LXV, 506–514 (1958).Google Scholar
  8. 8.
    Prijatelj, N., & I. Vidav, On special *-regular rings. Michigan Math. J. 18, 213–221 (1971).Google Scholar
  9. 9.
    Rickart, C.E., Banach algebras with an adjoint operation. Ann. of Math. 47, 528–550 (1946).Google Scholar
  10. 10.
    Kaplansky, I., Any ortho-complemented complete modular lattice is a continuous geometry. Ann. of Math. (2), 61, 524–541 (1955).Google Scholar
  11. 11.
    Skornyakov, L.A., Complemented Modular Lattices and Regular Rings. London: Oliver & Boyd 1964.Google Scholar
  12. 12.
    Rao, C.R., & S.K. Mitra, Generalized Inverse of Matrices and its Applications. New York: John Wiley & Sons, Inc. 1971.Google Scholar
  13. 13.
    Greville, T.N.E., On the solution of the matrix equation xax=x. MCR Technical Summary Report # 1169, 1971.Google Scholar
  14. 14.
    Fitzgerald, D.G., On inverses of products of idempotents in regular semigroups. Austral. J. Math. 13, 335–337 (1972).Google Scholar
  15. 15.
    Gillman, L., & M. Jerison, Rings of Continuous Functions, p. 16. Princeton: Van Nostrand 1960.Google Scholar
  16. 16.
    Hartwig, R.E., 1–2 inverses and the invariance of ba + c. Lin. Alg. Appl. 11, 271–275 (1975).Google Scholar
  17. 17.
    scvon Neumann, J., On regular rings. Proc. Nat. Acad. Sci. 22, 707–713 (1936).Google Scholar
  18. 18.
    Boullion, T.L., & P.L. Odell, Generalized Inverse Matrices. New York: Wiley Interscience 1971.Google Scholar
  19. 19.
    Penrose, R., A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406–413 (1958).Google Scholar
  20. 20.
    Pearl, M.H., Generalized inverses of matrices with entries taken from an arbitrary field. Lin. Alg. Appl. 1, 571–587 (1968).Google Scholar
  21. 21.
    Gabriel, R., g-Inverse of a matrix over arbitrary field, analytically-considered. J. Reine und Angew. Math. 244, 83–93 (1970).Google Scholar
  22. 22.
    Moore, E.H., General Analysis, Part 1. Mem. Amer. Philos. Soc. (1935).Google Scholar
  23. 23.
    Zlobec, S., An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix. SIAM Rev. 12, 132–134 (1970).Google Scholar
  24. 24.
    Robert, P., On the group inverse of a linear transformation. J. Math. Anal. Appl. 22, 658–669 (1968).Google Scholar
  25. 25.
    Hartwig, R.E., Rank factorization and g-inversion, to be published, J. Industrial Math.Google Scholar
  26. 26.
    Ayres, F., Theory and Problems of Matrices, p. 57. New York: McGraw-Hill 1962.Google Scholar
  27. 27.
    Carlson, D., E. Haynsworth, & T. Markham, A generalization of the Schur-complement by means of the Moore-Penrose inverse. SIAM J. Appl. Math. 26, 169–179 (1974).Google Scholar
  28. 28.
    Lewis, T.O., & T.G. Newmann, Pseudo-inverses of positive semi-definite matrices. SIAM J. Appl. Math. 16, 701–703 (1968).Google Scholar
  29. 29.
    McCoy, N.H., Rings and Ideals. Buffalo: Carus Monograph No. 8, 1948.Google Scholar
  30. 30.
    scde Bruyn, N.G., Inequalities concerning minors and eigenvalues. Nieuw Arch. Wiskunde 3IV, 18–35 (1956).Google Scholar
  31. 31.
    Grandmacher, F.R., The Theory of Matrices, vol. 1. New York: Chelsea 1960.Google Scholar
  32. 32.
    Kaplansky, I., Elementary divisors and modules. Trans. A.M.S. 66, 464–491 (1949).Google Scholar
  33. 33.
    Hartwig, R.E., Singular values and g-inverses of bordered matrices, to be published, SIAM J. Appl. Math.Google Scholar
  34. 34.
    Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudo inverses. SIAM, J. Appl. Math. 17, 434–440 (1969).Google Scholar
  35. 35.
    Cline, R.E., Representations for the generalized inverse of a partitioned matrix. SIAM J. Appl. Math. 12, 588–600 (1964).Google Scholar
  36. 36.
    Greville, T.N., Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966). Erratum, ibid 9, 249. Erratum, private communication.Google Scholar
  37. 37.
    Graybill, F.A., Introduction to Matrices with Applications in Statistics. Wadsworth: Belmont Cal., 1969.Google Scholar
  38. 38.
    de Polinac, C., Inverses generalisées de matrices bordées et de matrices peturbées, unpublished.Google Scholar
  39. 39.
    Pringle, R.M., A.A. Rayner, Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models. SIAM. Rev. 12, 107–115 (1970).Google Scholar
  40. 40.
    Meyer, C.D., The Moore-Penrose inverse of a bordered matrix. Lin. Alg. Appl. 5, 375–382 (1972).Google Scholar
  41. 41.
    Arghiriade, E., Remarques sur l'inverse généralisée d'un produit de matrices. Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. 42, 621–625 (1967).Google Scholar
  42. 42.
    Schwerdtfeger, H., Introduction to Linear Algebra and the Theory of Matrices. Groningen: P. Noordhoff 1950.Google Scholar
  43. 43.
    Meyer, C.D., Some remarks on EPr matrices, and generalized inverses. Lin. Alg. Appl. 3, 275–278 (1970).Google Scholar
  44. 44.
    Baskett, T.S., & I.J. Katz, Theorems on products of EPr matrices. Lin. Alg. and Appl. 2, 87–103 (1969).Google Scholar
  45. 45.
    Katz, I.J., Remarks on two recent results in matrix theory. Lin. Alg. and Appl. 5, 109–112 (1972).Google Scholar
  46. 46.
    Berberian, S.K., The regular ring of a finite Baer *-ring. J. Alg. 23, 35–65 (1972).Google Scholar
  47. 47.
    Foulis, D.J., Relative inverses in Baer *-semigroups. Mich. Math. J. 10, 65–84 (1963).Google Scholar
  48. 48.
    McCoy, N.H., Generalized regular rings. Bull. Amer. Math. Soc. 45, 175–178 (1939).Google Scholar
  49. 49.
    Drazin, M.P., Proc. Edinb. Math. Soc. 9, 157–165 (1958).Google Scholar
  50. 50.
    Barnes, W.E., On the Γ-rings of Nobusawa. Pac. J. Math. 18, 411–422 (1966).Google Scholar
  51. 51.
    scBen Israel, A., & T.N. Greville, Generalized Inverses, Theory and Applications. New York: John Wiley & Sons, Inc., N.Y. 1974.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Robert E. Hartwig
    • 1
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations