Advertisement

Archive for Rational Mechanics and Analysis

, Volume 31, Issue 2, pp 127–150 | Cite as

Controllable states of elastic heat conductors

  • Henry J. Petroski
  • Donald E. Carlson
Article

Keywords

Neural Network Complex System Heat Conductor Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivlin, R.S., Large elastic deformations of isotropic materials IV. Further developments of the general theory. Phil. Trans. Roy. Soc. London [A] 241, 379 (1948).Google Scholar
  2. 2.
    Ericksen, J.L., Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. angew. Math. Phys. 5, 466 (1954).Google Scholar
  3. 3.
    Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Handbuch der Physik, III/3, S. Flügge, ed. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  4. 4.
    Singh, M., & A.C. Pipkin, Note on Ericksen's problem. Z. angew. Math. Phys. 16, 706 (1965).Google Scholar
  5. 5.
    Singh, M., & A.C. Pipkin, Controllable states of elastic dielectrics. Arch. Rational Mech. Anal. 21, 169 (1966).Google Scholar
  6. 6.
    Fosdick, R.L., Remarks on Compatibility. Modern Developments in the Mechanics of Continua, S. Eskinazi, ed. New-York: Academic Press 1966.Google Scholar
  7. 7.
    Klingbeil, W.W., & R.T. Shield, On a class of solutions in plane finite elasticity. Z. angew. Math. Phys. 17, 489 (1966);Google Scholar
  8. 8.
    Gurtin, M.E., Thermodynamics and the possibility of spatial interaction in elastic materials. Arch. Rational Mech. Anal. 19, 339 (1965).Google Scholar
  9. 9.
    Coleman, B.D., & V.J. Mizel, Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40, 1116 (1964).Google Scholar
  10. 10.
    Pipkin, A.C., & R.S. Rivlin, The formulation of constitutive equations in continuum physics. Div. Appl. Math. Brown Univ. Report DA-4531/4 (1958) [A.C. Pipkin, Brown Univ. Ph. D. Thesis, Univ. Microfilms, Ann Arbor, Michigan (1959)].Google Scholar
  11. 11.
    Petroski, H.J., & D.E. Carlson, Controllable states of rigid heat conductors. Z. angew. Math. Phys. 19, 372 (1968).Google Scholar
  12. 12.
    Ericksen, J.L., Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. XXXIV, 126 (1955).Google Scholar
  13. 13.
    Singh, M., Controllable states in compressible elastic dielectrics. Z. angew. Math. Phys. 17, 449 (1966).Google Scholar
  14. 14.
    Rivlin, R.S., & D.W. Saunders, Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. London [A] 243, 251 (1951).Google Scholar
  15. 15.
    Coleman, B.D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167 (1963).Google Scholar
  16. 16.
    Gurtin, M.E., & W.O. Williams, An axiomatic foundation for continuum thermodynamics. Arch. Rational Mech. Anal. 26, 83 (1967).Google Scholar
  17. 17.
    Coleman, B.D., & V.J. Mizel, Thermodynamics and departures from Fourier's law of heat conduction. Arch. Rational Mech. Anal. 13, 245 (1963).Google Scholar
  18. 18.
    Coleman, B.D., & M.E. Gurtin, Equipresence and constitutive equations for rigid heat conductors. Z. angew. Math. Phys. 18, 199 (1967).Google Scholar
  19. 19.
    Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197 (1958).Google Scholar
  20. 20.
    Hayes, M., N. Laws, & R.B. Osborn, Universal static deformation and temperature fields for homogeneous, isotropic thermoelastic bodies. Private communication (1968).Google Scholar
  21. 21.
    Hamel, G., Potentialströmungen mit konstanter Geschwindigkeit. Sitzgsber. preuss. Akad. Wiss., phys-math. Kl. 1937, 5.Google Scholar
  22. 22.
    Prim, R.C., Steady rotational flow of ideal gases. J. Rational Mech. Anal. 1, 425 (1952).Google Scholar
  23. 23.
    Cosserat, E. & Cosserat, F., Sur la théorie de l'élasticité. Ann. Toulouse 10, 1 (1896).Google Scholar
  24. 24.
    Petroski, H. J., Controllable states of elastic heat conductors. Ph. D. Thesis, University of Illinois (1968).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Henry J. Petroski
    • 1
    • 2
  • Donald E. Carlson
    • 1
    • 2
  1. 1.Department of Aerospace Engineering & Engineering MechanicsThe University of Texas at AustinUSA
  2. 2.Department of Theoretical & Applied MechanicsUniversity of IllinoisUrbana

Personalised recommendations