Archive for Rational Mechanics and Analysis

, Volume 100, Issue 1, pp 13–52 | Cite as

Fine phase mixtures as minimizers of energy

  • J. M. Ball
  • R. D. James


Neural Network Complex System Nonlinear Dynamics Electromagnetism Fine Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Adams, Sobolev Spaces. New York: Academic Press, 1975.Google Scholar
  2. 2.
    S. Agmon, A. Douglis & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964), 35–92.Google Scholar
  3. 3.
    J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403.Google Scholar
  4. 4.
    J. M. Ball, Strict convexity, strong ellipticity, and regularity in the calculus of variations. Math. Proc. Camb. Phil. Soc. 87 (1980), 501–513.Google Scholar
  5. 5.
    J. M. Ball, J. C. Currie & P. J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Functional Anal. 41 (1981), 135–174.Google Scholar
  6. 6.
    J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. Roy. Soc. London A 306 (1982), 557–611.Google Scholar
  7. 7.
    J. M. Ball & J. E. Marsden, Quasiconvexity, positivity of the second variation, and elastic stability. Arch. Rational Mech. Anal. 86 (1984), 251–277.Google Scholar
  8. 8.
    J. M. Ball & F. Murat, W 1, P-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225–253.Google Scholar
  9. 9.
    J. M. Ball & G. Knowles, Liapunov functions for thermomechanics with spatially varying boundary temperatures. Arch. Rational Mech. Anal. 92 (1986), 193–204.Google Scholar
  10. 10.
    Z. S. Basinski & J. W. Christian, Crystallography of deformation by twin boundary movements in indium-thallium alloys. Acta Met. 2 (1954), 101–116; also, Experiments on the martensitic transformation in single crystals of indium-thallium alloys. Acta Met. 2 (1954), 148–166.Google Scholar
  11. 11.
    J. S. Bowles & J. K. MacKenzie, The crystallography of martensitic transformations I and II. Acta Met. 2 (1954), 129–137, 138–147.Google Scholar
  12. 12.
    D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten, von Heterogenen Substanzen. Ann. Phys. 5 (1935), 636–664.Google Scholar
  13. 13.
    M. W. Burkart & T. A. Read, Diffusionless phase change in the indium-thallium system. Trans. AIME J. Metals 197 (1953), 1516–1524.Google Scholar
  14. 14.
    M. Chipot & D. Kinderlehrer, Equilibrium configurations of crystals, to appear.Google Scholar
  15. 15.
    J. W. Christian, The Theory of Transformations in Metals and Alloys. Pergamon Press, 1975.Google Scholar
  16. 16.
    J. L. Ericksen, Some phase transitions in crystals. Arch. Rational Mech. Anal. 73 (1980), 99–124.Google Scholar
  17. 17.
    J. L. Ericksen, Constitutive theory for some constrained elastic crystals. IMA Preprint # 123, Institute for Mathematics and its Applications, University of Minnesota.Google Scholar
  18. 18.
    J. L. Ericksen, Some surface defects in unstressed thermoelastic solids. Arch. Rational Mech. Anal. 88 (1985), 337–345.Google Scholar
  19. 19.
    J. L. Ericksen, Some Constrained Elastic Crystals, in Material Instabilities in Continuum Mechanics, (ed. J. M. Ball). Oxford University Press, to appear.Google Scholar
  20. 20.
    I. Fonseca, Variational methods for elastic crystals. Arch. Rational Mech. Anal., 97 (1987), 189–220.Google Scholar
  21. 21.
    J. W. Gibbs, On the equilibrium of heterogeneous substances, in The Scientific Papers of J. Willard Gibbs, Vol. 1. Dover Publications, New York, 1961.Google Scholar
  22. 22.
    M. E. Gurtin, Two-phase deformations of elastic solids. Arch. Rational Mech. Anal. 84 (1983), 1–29.Google Scholar
  23. 23.
    R. D. James, Finite deformation by mechanical twinning. Arch. Rational Mech. Anal. 77 (1981), 143–176.Google Scholar
  24. 24.
    R. D. James, The stability and metastability of quartz, in Metastability and Incompletely Posed Problems, IMA, Vol. 3 (ed. S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller) Springer-Verlag, 1987, 147–176.Google Scholar
  25. 25.
    R. D. James, Displacive phase transformations in solids. J. Mech. Phys. Solids 34 (1986), 359–394.Google Scholar
  26. 26.
    D. Kinderlehrer, Remarks about equilibrium configurations of crystals, in Material Instabilities in Continuum Mechanics, (ed. J. M. Ball). Oxford University Press, to appear.Google Scholar
  27. 27.
    B. Klosowicz & K. A. Lurie, On the optimal nonhomogeneity of a torsional elastic bar. Arch. of Mech. 24 (1971), 239–249.Google Scholar
  28. 28.
    R. V. Kohn & G. Strang, Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc. 9 (1983), 211–214.Google Scholar
  29. 29.
    N. A. Lavrov, K. A. Lurie & A. V. Cherkaev, Nonuniform rod of extremal torsional stiffness. Mech. of Sol. 15 (1980), 74–80.Google Scholar
  30. 30.
    K. A. Lurie, A. V. Cherkaev & A. V. Fedorov, Regularization of optimal design problems for bars and plates I, II. J. Opt. Th. Appl. 37 (1982), 499–522 and 523–543; also, On the existence of solutions to some problems of optimal design for bars and plates. J. Opt. Th. Appl. 42 (1984), 247–281.Google Scholar
  31. 31.
    M. Marcus & V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320.Google Scholar
  32. 32.
    G. W. Milton, Modelling the properties of composites by laminates, in Proc. Workshop on Homogenization and Effective Moduli of Materials and Media, 1984, to appear.Google Scholar
  33. 33.
    F. Murat & L. Tartar, Calcul des variations et homogénéisation, in Ecole d'été d'homogénéisation, Bureau sans Nappe, Eyrolles, Paris, July 1983, to appear.Google Scholar
  34. 34.
    N. Nakanishi, Characteristics of stress-strain behaviour associated with thermoelastic martensitic transformation. Arch. Mech. 35 (1983), 37–62.Google Scholar
  35. 35.
    Z. Nishiyama, Martensitic Transformation. Academic Press, 1978.Google Scholar
  36. 36.
    W. Noll, A general framework for problems in the statics of finite elasticity, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (ed. G. M. de la Penha & L. A. Medeiros), North-Holland, 1978.Google Scholar
  37. 37.
    K. Otsuka & K. Shimizu, Morphology and crystallography of thermoelastic γ′ Cu-Al-Ni martensite. Japanese J. Appl. Phys. 8 (1969), 1196–1204.Google Scholar
  38. 38.
    A. C. Pipkin, Some examples of crinkles, in Homogenization and Effective Moduli of Materials and Media. IMA, Vol. 1 (ed. J. L. Ericksen, D. Kinderlehrer, R. Kohn & J. L. Lions), Springer-Verlag, 1986.Google Scholar
  39. 39.
    U. E. Raitum, The extension of extremal problems connected with a linear elliptic equation. Soviet Math. Dokl. 19 (1978), 1342–1345.Google Scholar
  40. 40.
    U. E. Raitum, On optimal control problems for linear elliptic equations. Soviet Math. Dokl. 20 (1979), 129–132.Google Scholar
  41. 41.
    Yu. G. Reshetnyak, On the stability of conformal mappings in multidimensional spaces. Siberian Math. J. 8 (1967), 69–85.Google Scholar
  42. 42.
    Yu. G. Reshetnyak, Liouville's theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J. 8 (1967), 631–653.Google Scholar
  43. 43.
    H. C. Simpson & S. J. Spector, On failure of the complementing condition and nonuniqueness in linear elastostatics. J. Elasticity 15 (1985), 229–231.Google Scholar
  44. 44.
    H. C. Simpson & S. J. Spector, On the sign of the second variation in finite elasticity, Arch. Rational Mech. Anal. 98 (1987), 1–30.Google Scholar
  45. 45.
    L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of nonlinear partial differential equations (ed. J. M. Ball). Reidel, 1983.Google Scholar
  46. 46.
    L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires, in Lecture Notes in Physics 195. Springer-Verlag, 1984, 384–412.Google Scholar
  47. 47.
    C. Truesdell, Some challenges offered to analysis by rational thermomechanics in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (ed. G. M. de la Penha & L. A. J. Medeiros), North-Holland, 1978.Google Scholar
  48. 48.
    G. van Tendeloo, J. van Landuyt & S. Amelinckx, The α-β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys. Stat. Sol. a 33 (1976), 723–735.Google Scholar
  49. 49.
    C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations. MacMillan, 1964.Google Scholar
  50. 50.
    M. S. Wechsler, D. S. Lieberman & T. A. Read, On the theory of the formation of martensite. Trans. AIME J. Metals, 197 (1953), 1503–1515.Google Scholar
  51. 51.
    H. Weyl, The Classical Groups. Princeton, 1946.Google Scholar
  52. 52.
    L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. Chelsea, 1980.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. M. Ball
    • 1
    • 2
  • R. D. James
    • 1
    • 2
  1. 1.Heriot-Watt UniversityEdinburgh
  2. 2.University of MinnesotaMinneapolis

Personalised recommendations