Archive for Rational Mechanics and Analysis

, Volume 106, Issue 3, pp 261–285 | Cite as

Observations on Moser's inequality

  • J. B. McLeod
  • L. A. Peletier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Moser, A sharp form of an inequality by N. Trudinger, Indiana U. Math. J. 20 (1971), 1077–1092.Google Scholar
  2. 2.
    N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.Google Scholar
  3. 3.
    J. Moser, On a nonlinear problem in differential geometry, Dynamical Systems (ed. M. M. Peixoto), N.Y. Academic Press (1973), 273–280.Google Scholar
  4. 4.
    L. Carleson & S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sc. Math. (2) 110 (1986), 113–127.Google Scholar
  5. 5.
    F. V. Atkinson & L. A. Peletier, Ground states and Dirichlet problems for -δu=f(u) in R 2, Arch. Rational Mech. Anal. 96 (1986), 147–165.Google Scholar
  6. 6.
    J. L. McLeod & K. B. McLeod, Critical Sobolev exponents in two dimensions, Proc. Royal Soc. Edin. A 109 (1988), 1–15.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1989

Authors and Affiliations

  • J. B. McLeod
    • 1
    • 2
  • L. A. Peletier
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of PittsburghUSA
  2. 2.Department of MathematicsUniversity of LeidenThe Netherlands

Personalised recommendations