Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders

  • Stuart S. Antman


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. J. E. Adkins (1955a), Finite deformation of materials exhibiting curvilinear aeolotropy, Proc. Roy. Soc. Lond. A 229, 119–134.Google Scholar
  2. J. E. Adkins (1955b), Some general results in the theory of large elastic deformations, Proc. Roy. Soc. Lond. A 231, 75–90.Google Scholar
  3. J. E. Adkins & A. E. Green (1961), The finite flexure of an aeolotropic elastic cuboid, Arch. Rational Mech. Anal. 8, 9–14.Google Scholar
  4. J. C. Alexander & S. S. Antman (1983), Global behavior of solutions of nonlinear equations depending on infinite-dimensional parameters, Indiana U. Math. J. 32.Google Scholar
  5. J. C. Alexander & J. A. Yorke (1976), The implicit function theorem and global methods of cohomology. J. Functional Analysis 21, 330–339.Google Scholar
  6. S. S. Antman (1972), The Theory of Rods, Handbuch der Physik VI a/2, edited by C. Truesdell, Springer-Verlag, 641–703.Google Scholar
  7. S. S. Antman (1976), Ordinary differential equations of one-dimensional nonlinear elasticity, Arch. Rational Mech. Anal. 61, 307–393.Google Scholar
  8. S. S. Antman (1978), A family of semi-inverse problems of nonlinear elasticity, in de La Penha & Madeiros (1978), 1–24.Google Scholar
  9. S. S. Antman (1979), The eversion of thick spherical shells, Arch. Rational Mech. Anal. 70, 113–123.Google Scholar
  10. S. S. Antman (1984), Constitutive restrictions permitting cavitation in nonlinearly elastic cylinders, in preparation.Google Scholar
  11. J. M. Ball (1980), Strict convexity, strong ellipticity, and regularity in the calculus of variations, Math. Proc. Camb. Phil. Soc. 87, 501–513.Google Scholar
  12. J. M. Ball (1981a), Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh 88A, 315–328.Google Scholar
  13. J. M. Ball (1981b), Remarques sur l'existence et la régularité des solution d'elastostatique nonlinéaire, in Recent Contributions to Nonlinear Partial Differential Equations, edited by H. Berestycki & H. Brezis, Pitman, London.Google Scholar
  14. J. M. Ball (1982), Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil, Trans. Roy. Soc. London A 306, 557–611.Google Scholar
  15. H. Brezis (1968), Équations et inéquations nonlinéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier, 18, 115–175.Google Scholar
  16. B. Budiansky & G. F. Carrier (1973), The pointless wedge, SIAM J. Appl. Math. 25, 378–387.Google Scholar
  17. L. Caprioli (1955), Su un criterio per l'esistenza dell'energia di deformazione. Boll. Un. Mat. Ital. (3) 10, 481–483.Google Scholar
  18. B. D. Coleman (1962), Mechanical and thermodynamical admissibility of stress-strain functions, Arch. Rational Mech. Anal. 9, 172–186.Google Scholar
  19. G. M. de La Penha & L. A. Madeiros, eds. (1978), Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam.Google Scholar
  20. J. L. Ericksen (1955), Deformations possible in every compressible, perfectly elastic material, J. Math. & Phys. 34, 126–128.Google Scholar
  21. J. L. Ericksen (1980), Some phase transitions in crystals, Arch. Rational Mech. Anal. 73, 99–124.Google Scholar
  22. J. W. Gibbs & E. B. Wilson (1901), Vector Analysis, Yale Univ. Press.Google Scholar
  23. A. E. Green (1965), Finite elastic deformation of compressible isotropic bodies, Proc. Roy. Soc. Lond. A 227, 271–278.Google Scholar
  24. A. E. Green & J. E. Adkins (1960), Large Elastic Deformations, Clarendon Press, Oxford.Google Scholar
  25. A. E. Green & E. W. Wilkes (1954), Finite plane strain for orthotropic bodies, J. Rational Mech. Anal. 3, 713–723.Google Scholar
  26. M. Hayes (1969), Static implications of the strong-ellipticity condition, Arch. Rational Mech. Anal. 33, 181–191.Google Scholar
  27. R. Hill (1968), On constitutive inequalities for simple materials — I, J. Mech. Phys. Solids 16, 229–242.Google Scholar
  28. W. W. Klingbeil & R. T. Shield (1966), On a class of solutions in plane finite elasticity, Z. Angew. Math. Phys. 17, 489–511.Google Scholar
  29. M. A. Krasnosel'skii & Ya. B. Rutitskii (1958), Convex Functions and Orlicz Spaces, in Russian, Fizmatgiz; English transl. by L. F. Boron (1961), Noordhoff, Groningen.Google Scholar
  30. J. L. Lions (1969), Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris.Google Scholar
  31. E. J. McShane (1938), Some existence theorems for the problems of the calculus of variations, Duke Math. J. 4, 132–156.Google Scholar
  32. J. Nečas (1967), Les Méthodes Directes en Théorie des Équations Elliptiques, Masson.Google Scholar
  33. R. S. Rivlin (1948), Large elastic deformations of isotropic materials, IV. Further developments of the general theory. Phil. Trans. Roy. Soc. Lond. A 241, 379–397.Google Scholar
  34. M. Syngh & A. C. Pipkin (1965), Note on Ericksen's problem, Z. angew. Math. Phys. 16, 706–709.Google Scholar
  35. C. Truesdell & W. Noll (1965), The Non-linear Field Theories of Mechanics, Handbuch der Physik III/3, Springer-Verlag.Google Scholar
  36. C. Truesdell (1978), Some challenges offered to analysis by rational thermomechanics, in de La Penha & Madeiros (1976), 495–603.Google Scholar
  37. C.-C. Wang & C. Truesdell (1973), Introduction to Rational Elasticity, Noordhoff.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Stuart S. Antman
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of MarylandCollege Park
  2. 2.Institute for Physical Science & Technology, University of MarylandCollege Park

Personalised recommendations