Archive for Rational Mechanics and Analysis

, Volume 56, Issue 3, pp 191–252 | Cite as

Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade

  • J. Ernest Dunn
  • Roger L. Fosdick
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langlois, W. E., Steady flow of a slightly viscoelastic fluid between rotating spheres. Quart. Appl. Math. 21, 61–71 (1963).Google Scholar
  2. 2.
    Coleman, B. D., & W. Noll, An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 355–370 (1960).Google Scholar
  3. 3.
    Ting, T.-W., Certain non-steady flows of second order fluids. Arch. Rational Mech. Anal. 14, 1–26 (1963).Google Scholar
  4. 4.
    Coleman, B. D., & H. Markovitz, Normal stress effects in second-order fluids. J. Appl. Physics 35, 1–9 (1964).Google Scholar
  5. 5.
    Markovitz, H., & B. D. Coleman, Nonsteady helical flows of second-order fluids. Physics of Fluids 7, 833–841 (1964).Google Scholar
  6. 6.
    Coleman, B. D., R. J. Duffin, & V. Mizel, Instability, uniqueness, and non-existence theorems for the equation u t = u xx -u xtx on a strip. Arch. Rational Mech. Anal. 19, 100–116 (1965).Google Scholar
  7. 7.
    Coleman, B. D., & V. Mizel, Breakdown of laminar shearing flows for second-order fluids in channels of critical width. ZAMM 46, 445–448 (1966).Google Scholar
  8. 8.
    Truesdell, C., Fluids of second grade regarded as fluids of convected elasticity. Physics of Fluids 8, 1936–1938 (1965).Google Scholar
  9. 9.
    Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1–46 (1964).Google Scholar
  10. 10.
    Coleman, B. D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963).Google Scholar
  11. 11.
    Gurtin, M. E., Modern Continuum Thermodynamics. Notas De Matemática Física, Vol. II. Instituto de Matemática, Universidade Federal do Rio de Janeiro, 1972.Google Scholar
  12. 12.
    Coleman, Bernard D., & James M. Greenberg, Thermodynamics and the stability of fluid motion. Arch. Rational Mech. Anal. 25, 321–341 (1967).Google Scholar
  13. 13.
    Coleman, Bernard D., On the stability of equilibrium states of general fluids. Arch. Rational Mech. Anal. 36, 1–32 (1970).Google Scholar
  14. 14.
    Coleman, B. D., On the dynamical stability of fluid phases. IUTAM Symposium on Instability of Continuous Systems. Berlin-Heidelberg-New York: Springer, 1971.Google Scholar
  15. 15.
    Serrin, James, On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 3, 1–13 (1959).Google Scholar
  16. 16.
    Joseph, Daniel D., & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch. Rational Mech. Anal. 49, 321–380 (1973).Google Scholar
  17. 17.
    Joseph, Daniel D., Gordon S. Beavers, & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch. Rational Mech. Anal. 49, 381–401 (1973).Google Scholar
  18. 18.
    Tanner, R. I., Some methods for estimating the normal stress functions in viscometric flows. Trans. Soc. Rheology 14, 483–507 (1970).Google Scholar
  19. 19.
    Gurtin, Morton E., On the thermodynamics of materials with memory. Arch. Rational Mech. Anal. 28, 40–50 (1968).Google Scholar
  20. 20.
    Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Flügge's Handbuch der Physik, III/3. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  21. 21.
    Truesdell, C., Rational Thermodynamics. New York: McGraw-Hill, 1969.Google Scholar
  22. 22.
    Spencer, A. J. M., Theory of invariants. Continuum Physics, Vol. I, Ed. A. Cemal Eringen. New York: Academic Press 1971.Google Scholar
  23. 23.
    Ogawa, Hajimu, On lower bounds and uniqueness for solutions of the Navier-Stokes equations. J. Math. Mech. 18, 445–452 (1968).Google Scholar
  24. 24.
    Oldroyd, J. G., The motion of an elastico-viscous liquid contained between coaxial cylinders, I. Quart. J. Mech. Appl. Math. 4, 271–282 (1951).Google Scholar
  25. 25.
    Ericksen, J. L., Thermoelastic stability. Proc. 5th U.S. National Congr. Appl. Mech., 187–193 (1966).Google Scholar
  26. 26.
    Dyer, R. H., & D. E. Edmunds, Lower bounds for solutions of the Navier-Stokes equations. Proc. London Math. Soc. 3, 169–178 (1968).Google Scholar
  27. 27.
    Garabedian, P., Partial Differential Equations. New York: Wiley, 1964.Google Scholar
  28. 28.
    Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach 1969.Google Scholar
  29. 29.
    Payne, L. E., & H. F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960).Google Scholar
  30. 30.
    Friedman, Avner, Partial Differential Equations of Parabolic Type. Prentice Hall: Englewood Cliffs, N.J. 1964.Google Scholar
  31. 31.
    Fichera, G., Existence theorems in elasticity. Handbuch der Physik, VIa/2. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  32. 32.
    Payne, L. E., & H. F. Weinberger, On Korn's inequality. Arch. Rational Mech. Anal. 8, 89–98 (1961).Google Scholar
  33. 33.
    Bernstein, B., & R. Toupin, Korn inequalities for the sphere and for the circle. Arch. Rational Mech. Anal. 6, 51–64 (1960).Google Scholar
  34. 34.
    Dafermos, C. M., Some remarks on Korn's inequality. Z. Angew. Math. Phys. 19, 913–920 (1968).Google Scholar
  35. 35.
    Hardy, G. H., J. E. Littlewood, & G. Pólya, Inequalities. Cambridge: University Press 1964.Google Scholar
  36. 36.
    Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–226 (1958).Google Scholar
  37. 37.
    Gurtin, Morton E., The linear theory of elasticity. Handbuch der Physik, VIa/2. BerlinHeidelberg-New York: Springer 1972.Google Scholar
  38. 38.
    Day, William Alan, The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosophy, Vol. 22. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  39. 39.
    Halmos, Paul Richard, Finite-Dimensional Vector Spaces. Princeton, N. J.: D. Van Nostrand 1958.Google Scholar
  40. 40.
    Truesdell, C., The natural time of a viscoelastic fluid: its significance and measurement. Physics of Fluids 7, 1134–1142 (1964).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. Ernest Dunn
    • 1
  • Roger L. Fosdick
    • 1
  1. 1.Department of Aerospace Engineering & MechanicsUniversity of MinnesotaMinneapolis

Personalised recommendations