Archive for Rational Mechanics and Analysis

, Volume 87, Issue 2, pp 107–165 | Cite as

Hopf Bifurcation in the presence of symmetry

  • Martin Golubitsky
  • Ian Stewart
Article

Abstract

Using group theoretic techniques, we obtain a generalization of the Hopf Bifurcation Theorem to differential equations with symmetry, analogous to a static bifurcation theorem of Cicogna. We discuss the stability of the bifurcating branches, and show how group theory can often simplify stability calculations. The general theory is illustrated by three detailed examples: O(2) acting on R2, O(n) on Rn, and O(3) in any irreducible representation on spherical harmonics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Adams [1969] Lectures on Lie Groups. Benjamin, New York.Google Scholar
  2. J. F. G. Auchmuty [1978] Qualitative effects of diffusion in chemical systems, Lectures on Mathematics in the Life Sciences 10, 49–99, Amer. Math. Soc., Providence R.I.Google Scholar
  3. J. F. G. Auchmuty [1979] Bifurcating Waves, Ann. New York Acad. Sci. 316, 263–278.Google Scholar
  4. A. K. Bajaj [1982] Bifurcating periodic solutions in rotationally symmetric systems, SIAM J. Appl. Math. 42, 1078–1098.Google Scholar
  5. G. E. Bredon [1972] Introduction to Compact Transformation Groups, Academic Press, New York.Google Scholar
  6. P. Chossat & G. Iooss [1984] Primary and secondary bifurcation in the Couette-Taylor problem, preprint, Nice.Google Scholar
  7. S.-N. Chow, J. Mallet-Paret & J. Yorke [1978] Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Analysis 2, 753–763.Google Scholar
  8. G. Cicogna [1981] Symmetry breakdown from bifurcation, Lett. Nuovo Cimento 31, 600–602.Google Scholar
  9. E. A. Coddington & N. Levinson [1955] Theory of Ordinary Differential Equations, McGraw-Hill, New York.Google Scholar
  10. L. Dornhoff [1971] Group Representation Theory Part A, Dekker, New York.Google Scholar
  11. T. Erneux & M. Herschkowitz-Kaufman [1977] Rotating waves as asymptotic solutions of a model chemical reaction, J. Chem. Phys. 66, 248–253.Google Scholar
  12. M. Golubitsky [1983] The Bénard Problem, symmetry, and the lattice of isotropy subgroups, in C. P. Bruter et al. (eds.), Bifurcation Theory, Mechanics, and Physics, Reidel, 225–256.Google Scholar
  13. M. Golubitsky & W. F. Langford [1981] Classification and unfoldings of degenerate Hopf bifurcations, J. Diff. Eqn. 41, 375–415.Google Scholar
  14. M. Golubitsky & D. G. Schaeffer [1985] Singularities and Groups in Bifurcation Theory Vol. I, Springer, New York (to appear).Google Scholar
  15. J. Guckenheimer [1984] Multiple bifurcation of codimension two, SIAM J. Math. Anal. 15, 1–49.Google Scholar
  16. J. Guckenheimer & P. Holmes [1983] Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Appl. Math. Sci. Series 42, Springer, Berlin, Heidelberg, New York.Google Scholar
  17. J. K. Hale [1969] Ordinary Differential Equations, Wiley, New York.Google Scholar
  18. J. K. Hale & A. P. Stokes [1960] Behavior of solutions near integral manifolds, Arch. Rational Mech. Anal. 6, 133–170.Google Scholar
  19. P. R. Halmos [1974] Finite-dimensional Vector Spaces, Springer, Berlin, Heidelberg, New York.Google Scholar
  20. B. D. Hassard, N. D. Kazarinoff, & Y.-H. Wan [1981] Theory and Applications of Hopf Bifurcation, London Math. Soc. Lecture Notes 41. Cambridge University Press.Google Scholar
  21. E. Ihrig & M. Golubitsky [1984] Pattern selection with O(3) Symmetry, Physica D: Nonlinear Phenomena (to appear).Google Scholar
  22. G. Iooss & D. D. Joseph [1981] Elementary Stability and Bifurcation Theory, Springer, Berlin, Heidelberg, New York.Google Scholar
  23. A. A. Kirillov [1976] Elements of the Theory of Representations, Springer, Berlin, Heidelberg, New York.Google Scholar
  24. J. E. Marsden & M. McCracken [1976] The Hopf bifurcation and its applications, Lecture Notes in Appl. Math. 19, Springer, Berlin, Heidelberg, New York.Google Scholar
  25. L. Michel [1972] Nonlinear group action. Smooth action of compact Lie groups on manifolds, in Statistical Mechanics and Field Theory. R. N. Sen & C. Weil (eds.). Israel University Press, Jerusalem, 133–150.Google Scholar
  26. L. Michel [1980] Symmetry defects and broken symmetry configurations. Hidden Symmetry. Rev. Mod. Phys. 52, No. 3, 617–651.Google Scholar
  27. V. Poénaru [1976] Singularités C en Présence de Symétrie, Lecture Notes in Math. 510, Springer, Berlin, Heidelberg, New York.Google Scholar
  28. D. Rand [1982] Dynamics and symmetry: predictions for modulated waves in rotating fluids, Arch. Rational Mech. Anal. 79, 1–38.Google Scholar
  29. M. Renardy [1982] Bifurcation from rotating waves, Arch. Rational Mech. Anal. 75, 49–84.Google Scholar
  30. D. Ruelle [1973] Bifurcations in the presence of a symmetry group, Arch. Rational Mech. Anal. 51, 136–152.Google Scholar
  31. D. H. Sattinger [1979] Group Theoretic Methods in Bifurcation Theory, Lecture Notes in Math. 762, Springer, Berlin, Heidelberg, New York.Google Scholar
  32. D. H. Sattinger [1980] Spontaneous symmetry breaking in bifurcation problems, in Symmetries in Science (eds. B. Gruber & R. S. Millman), Plenum Press, New York, 365–383.Google Scholar
  33. D. H. Sattinger [1983] Branching in the Presence of Symmetry, SIAM, Philadelphia.Google Scholar
  34. D. H. Sattinger [1984] Petit cours dans les méthodes des groupes dans la bifurcation. Cours de Troisième Cycle. Ecole Polytechnique Fédérale de Lausanne. To appear.Google Scholar
  35. S. Schecter [1976] Bifurcations with Symmetry, in The Hopf Bifurcation and its Applications (ed. J. E. Marsden & M. McCracken), Appl. Math. Sciences 19, Springer, New York, 224–249.Google Scholar
  36. G. Schwarz [1975] Smooth functions invariant under the action of a compact Lie group, Topology 14, 63–68.Google Scholar
  37. M. Spivak [1979] Differential Geometry vol. I, Publish or Perish, Berkeley.Google Scholar
  38. F. Takens [1973] Normal forms for certain singularities of Vectorfields, Ann. Inst. Fourier 23, 163–195.Google Scholar
  39. A. L. van der Bauwhede [1980] Local bifurcation and symmetry. Habilitation Thesis. Rijksuniversiteit Gent.Google Scholar
  40. S. A. van Gils [1984] Some studies in dynamical system theory, Ph. D. Thesis, Vrije Universiteit Amsterdam.Google Scholar
  41. J. A. Wolf [1967] Spaces of constant curvature, McGraw-Hill, New York.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1985

Authors and Affiliations

  • Martin Golubitsky
    • 1
    • 2
  • Ian Stewart
    • 1
    • 2
  1. 1.Mathematics DepartmentUniversity of Houston-University ParkHouston
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations