Differentiability of the blow-up curve for one dimensional nonlinear wave equations

  • Luis A. Caffarelli
  • Avner Friedman


Neural Network Complex System Wave Equation Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Caffarelli & A. Friedman, The blow-up boundary for nonlinear wave equations, to appear.Google Scholar
  2. 2.
    R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 183–203.Google Scholar
  3. 3.
    R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1981), 323–340.Google Scholar
  4. 4.
    F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235–268.Google Scholar
  5. 5.
    H. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu tt=−Au+F(u), Trans. Amer. Math. Soc. 192 (1974), 1–21.Google Scholar
  6. 6.
    T. Kato, Blow-up solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 32 (1980), 501–505.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1985

Authors and Affiliations

  • Luis A. Caffarelli
    • 1
    • 2
  • Avner Friedman
    • 1
    • 2
  1. 1.University of ChicagoChicago
  2. 2.Northwestern UniversityEvanston

Personalised recommendations