Advertisement

Human Genetics

, Volume 64, Issue 3, pp 222–226 | Cite as

Isoelectric focusing with immobilized pH gradients for the analysis of transferrin (Tf) subtypes and variants

  • Angelika Görg
  • J. Weser
  • R. Westermeier
  • W. Postel
  • S. Weidinger
  • W. Patutschnick
  • H. Cleve
Original Investigations

Summary

The human serum transferrin (Tf) system was analyzed by isoelectric focusing (IEF) with immobilized pH gradients. For the demonstration of the genetic variability the Fe1-Tf region was chosen. The pH range suitable for analysis of the Tf system was pH 5.20 to pH 5.75. The phenotypes of the common six TfC subtypes are described. No further heterogeneity among TfC1, TfC2, and TfC3 was noted. Also presented are the phenotypes of the TfC6 subtype, and of three different TfB and three different TfD variants. IEF with immobilized pH gradients appears to be a suitable method for the analysis of the inherited transferrin polymorphism.

Keywords

Internal Medicine Metabolic Disease Human Serum Genetic Variability Transferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckman G, Beckman L, Sikström C (1980) Transferrin C subtypes in different ethnic groups. Hereditas 92:189–192Google Scholar
  2. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982a) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339Google Scholar
  3. Bjellqvist B, Ek K (1982b) High resolution analytical electrofocusing in polyacrylamide gels with ultra-narrow Immobiline pH gradients. LKB Application Note, Nr. 321Google Scholar
  4. Cleve H, Patutschnick W, Postel W, Weser J, Görg A (1982) Analysis of the genetic variants of the human Gc system (VDBP) by isoelectric focusing in immobilized pH gradients. Electrophoresis 3:342–345Google Scholar
  5. Constans J, Salzano FM (1980) Gc and transferrin isoelectric focusing subtypes among Brazilian Indians. J Hum Evol 9: 489–494Google Scholar
  6. Constans J, Kühnl P, Viau M, Spielmann W (1980) A new procedure for the determination of transferrinC (TfC) subtypes by isoelectric focusing. Existence of two additional alleles, TfC4 and TfC5. Hum Genet 55:111–114Google Scholar
  7. Constans J, Viau M, Jaeger G, Palisson MJ (1981) Gc, Tf, Hp subtype and α 1 polymorphisms in a Pygmy Bi-Aka sample. Phenotype association between TfD1 and Gc1A1 (GcAb) variants. Hum Hered 31:129–137Google Scholar
  8. Dykes D, Polesky H (1981) Transferrin (Tf) subtyping on agarose: A new technique for isoelectric focusing. Hum Genet 59:365–366Google Scholar
  9. Dykes DD, Furio CM de, Polesky HF (1982) Transferrin (Tf) subtypes in US American Indians, Whites and Blacks using thin-layer agarose gels: report on a new variant TfC8. Electrophoresis 3: 162–164Google Scholar
  10. Giblett ER (1969) Genetic markers in human blood. Blackwell, Oxford, pp 127–159Google Scholar
  11. Görg A, Postel W, Westermeier R, Gianazza E, Righetti PG (1980a) Gel gradient electrophoresis, isoelectric focusing and two-dimensional techniques in horizontal, ultrathin polyacrylamide layers. J Biochem Biophys Methods 3:273–284Google Scholar
  12. Görg A, Postel W, Westermeier R (1980b) Ultrathin-layer horizontal electrophoresis, isoelectric focusing and protein mapping in polyacrylamide gels on cellophane. In: Radola BJ (ed) Electrophoresis '79. Walter de Gruyter, Berlin, pp 67–78Google Scholar
  13. Görg A, Postel W, Westermeier R, Righetti PG, Ek K (1982) One- and two-dimensional electrophoresis performed horizontally in ultrathin SDS pore-gradient gels. LKB Application Note, Nr.320Google Scholar
  14. Görg A, Postel W, Westermeier R, Bjellqvist B, Ek K, Gianazza E, Righetti PG (1983a) Isoelectric focusing in immobilized pH gradients. III. Application to two-dimensional separations. In: Stathakos D (ed) Electrophoresis '82. Walter de Gruyter, Berlin, pp 353–361Google Scholar
  15. Görg A, Postel W, Weser J, Weidinger S, Patutschnick W, Cleve H (1983b) Isoelectric focusing in immobilized pH gradients for the determination of the genetic Pi(α 1-antirypsin) variants. Electrophoresis 4:153–157Google Scholar
  16. Hoste B (1979) Group-specific component (Gc) and transferrin (Tf) subtypes ascertained by isoelectric focusing. A simple nonimmunological staining procedure for Gc. Hum Genet 50:75–79Google Scholar
  17. Hovanessian A, Awdeh ZL (1975) Analysis of human transferrin by isoelectric focusing. In: Righetti PG (ed) Progress in isoelectric focusing and isotachophoresis. North Holland, Amsterdam, pp 205–211Google Scholar
  18. Hovanessian AG, Awdeh ZL (1976) Gel isoelectric focusing of human serum transferrin. Eur J Biochem 68:333–338Google Scholar
  19. Janssen W, Jobmann K, Brinkmann B (1981) Transferrin-C-Subtypen in Norddeutschland. Studie zur Populations- und Formalgenetik. Ärztl Lab 27:35–37Google Scholar
  20. Kueppers F, Harpel BM (1980) Transferrin C subtypes in US Blacks and Whites. Hum Hered 30:376–382Google Scholar
  21. Kühnl P (1980) Elektrofokussierung in der forensischen Blutgruppenkunde. In: Radola BJ (Hrsg) Elektrophorese Forum '80. Referate-Band, München, S 199–211Google Scholar
  22. Kühnl P, Spielmann W (1978) Transferrin: Evidence for two common subtypes of the TfC allele. Hum Genet 43:91–95Google Scholar
  23. Kühnl P, Spielmann W (1979) A third common allele in the transferrin system, TfC3, detected by isoelectric focusing. Hum Genet 50:193–198Google Scholar
  24. Kühnl P, Spielmann W, Weber W (1979) Isoelectric focusing of rare transferrin (Tf) variants and common TfC subtypes. Hum Genet 46:83–87Google Scholar
  25. Lefranc M-P, Chibani J, Helal AN, Boukef K, Seger J, Lefranc G (1981) Human transferrin (Tf) and group-specific component (Gc) subtypes in Tunisia. Hum Genet 59:60–63Google Scholar
  26. Pascali VL, Ranalletta D, Auconi P (1982) Improved typing of human serum transferrin by isoelectric focusing on ultrathin layer polyacrylamide slab gels. Hum Genet 61:39–41Google Scholar
  27. Righetti PG, Gianazza E, Bjellqvist B, Ek K, Görg A, Westermeier R (1983) Isoelectric focusing in immobilized pH gradients. II. Application to hemoglobin analysis. In: Stathakos D (ed) Electrophoresis '82. Walter de Gruyter, Berlin, pp 75–82Google Scholar
  28. Smithies O (1957) Variations in human serum β-globulins. Nature 180:1482–1483Google Scholar
  29. Stibler H, Beckman G, Sikström C (1979) Subtypes of transferrin C. Hum Hered 29:320–324Google Scholar
  30. Tan SG, Gan YY, Asuan K (1982) Transferrin C subtyping in Malaysians and in Indonesians from North Sumatra. Hum Genet 60:369–370Google Scholar
  31. Thymann M (1978) Identification of a new serum protein polymorphism as transferrin. Hum Genet 43:225–229Google Scholar
  32. Walter H (1975) Transferrinsystem. In: Becker PE (Hrsg) Humangenetik, Vol I, Teil 3 Thieme Stuttgart, S 137–166Google Scholar
  33. Walter H, Strodtmann H, Hilling M, Singh IP, Bhasin MK, Veerraju P (1981) Transferrin subtypes in six Indian population samples. Hum Hered 31:152–155Google Scholar
  34. Weidinger S, Schwarzfischer F, Cleve H (1980) Classification of transferrin (Tf) subtypes by isoelectric focusing. Z Rechtsmed 85: 255–261Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Angelika Görg
    • 1
  • J. Weser
    • 1
  • R. Westermeier
    • 1
  • W. Postel
    • 1
  • S. Weidinger
    • 2
  • W. Patutschnick
    • 2
  • H. Cleve
    • 2
  1. 1.Lehrstuhl für Allgemeine LebensmitteltechnologieTechnische Universität MünchenFreising-WeihenstephanFederal Republic of Germany
  2. 2.Institut für Anthropologie und Humangenetik der Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations