Advertisement

Molecular and General Genetics MGG

, Volume 235, Issue 2–3, pp 359–364 | Cite as

Isolation of purine auxotrophic mutants of Lactococcus lactis and characterization of the gene hpt encoding hypoxanthine guanine phosphoribosyltransferase

  • Dan Nilsson
  • Anette Ager Lauridsen
Original Articles

Summary

Five purine auxotrophic mutants of Lactococcus lactis were isolated. L. lactis was capable of converting adenine, guanine and hypoxanthine to AMP, GMP and IMP, respectively, indicating the existence of adenine phosphoribosyltransferase (APRT) and hypoxanthine guanine phosphoribosyltransferase (HGPRT) activities. A 1.3 kb DNA fragment from L. lactis was cloned by complementation of the hpt mutation in Escherichia coli. Introduction of this fragment into L. lactis resulted in an increase in HGPRT activity. In vitro transcription and translation analysis showed that the fragment coded for a polypeptide with Mr of 22000. The nucleotide sequence of this hpt gene was determined.

Key words

Purine salvage pathways Lactococcus lactis hpt Nucleotide sequence Hypoxanthine guanine phosphoriboxyl transferase (HGPRT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523Google Scholar
  2. Craig SP III, Muralidhar MG, McKerrow JH, Wang CC (1989) Evidence for a class of very small introns in the gene for hypoxanthine-guanine phosphoribosyl-transferase in Schistosoma mansoni. Nucleic Acids Res 17:1635–1647Google Scholar
  3. Clark DJ, Maaloe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112Google Scholar
  4. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395Google Scholar
  5. Endo T, Uratani B, Freese E (1983) Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J Bacteriol 156:169–179Google Scholar
  6. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9Google Scholar
  7. Gasson MJ (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol Rev 87:43–60Google Scholar
  8. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580Google Scholar
  9. Hayes F, Daly C, Fitzgerald GF (1990) Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pC1305. Appl Environ Microbiol 56:202–209Google Scholar
  10. Henkin TM, Donnelly CE, Sonenshein AL (1988) Mutations in the spacer region of a Bacillus subtilis promoter. In: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of bacilli, Vol. 2, Academic Press, San Diego, pp 63–67Google Scholar
  11. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123Google Scholar
  12. Hove-Jensen B, Harlow KW, King CJ, Switzer RL (1986) Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem 261:327–332Google Scholar
  13. Jagadeeswaran P, Ashman CR, Roberts S, Langenberg J (1984) Nucleotide sequence and analysis of deletion mutants of Escherichia coli gpt gene in plasmid PSV2gpt. Gene 31:309–313Google Scholar
  14. Jochimsen B, Nygaard P, Vestergaard T (1975) Location on the chromosome of Escherichia coli of genes governing purine metabolism. Mol Gen Genet 143:85–91Google Scholar
  15. Johansen E, Kibenich A (1992) Characterization of Leuconostoc isolates from commercial mixed-strain mesophilic starter cultures. J Dairy Sci 75:1186–1191Google Scholar
  16. Jolly DJ, Okayama H, Berg P, Esty AC, Filpula D, Bohlen P, Johnson GG, Shively JE, Hunkapillar T, Friedmann T (1983) Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci USA 80:477–481Google Scholar
  17. Ludwig W, Seewaldt E, Klipper-Balz R, Schleifer KH, Magrum L, Woese CR, Fox GE, Stackebrandt E (1985) The phylogenetic position of Streptococci and Enterococcus. J Gen Microbiol 131:543–551Google Scholar
  18. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162Google Scholar
  19. McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 87:3–14Google Scholar
  20. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  21. Moran CP Jr, Lang N, Le Grice FSJ, Lee G, Stephens M, Sonenshein AL (1982) Nucleotide sequence that signals the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346Google Scholar
  22. Neuhard J, Nygaard P (1987) Purines and pyrimidines. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington DC, pp 445–473Google Scholar
  23. Nilsson D, Hove-Jensen B (1987) Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene. Gene 53:247–255Google Scholar
  24. Nygaard P (1983) Utilization of preformed purine bases and nucleosides. In: Munch-Petersen A (ed) Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press, New York, pp 27–93Google Scholar
  25. Otto R, Brink B, Veldkamp H, Konings WN (1983) The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS 16:69–74Google Scholar
  26. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5473–5467Google Scholar
  27. Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346Google Scholar
  28. Showalter RE, Silverman MR (1990) Nucleotide sequence of a gene, hpt, for hypoxanthine phosphoribosyltransferase from Vibrio harveyi. Nucleic Acids Res 18:4621Google Scholar
  29. Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FE, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85Google Scholar
  31. Vasanthakumar G, Davis RL Jr, Sullivan MA, Donahue JP (1989) Nucleotide sequence of cDNA clone for hypoxanthine-guanine phosphoribosyltransferase from Plasmodium falciparum. Nucleic Acids Res 17:8382Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Dan Nilsson
    • 1
  • Anette Ager Lauridsen
    • 1
  1. 1.Department of GeneticsChr. Hansen's Laboratorium Denmark A/SHørsholmDenmark

Personalised recommendations