Water, Air, and Soil Pollution

, Volume 86, Issue 1–4, pp 221–234 | Cite as

Effects of soil acidification on foliar leaching and retranslocation of metals in vascular plants

  • Elin Gjengedal


This paper reports on the seasonal patterns in leaf metal concentrations as influenced by artificial acidification and acidification due to acid precipitation at ambient levels in Southern Norway. The effects of change in soil nutrient availability can be concealed for a long time because of ability of plants to retranslocate mobile nutrients including Cu, Mg, K, and Zn. Exceptions are, e.g., Ca and Mn which are relatively immobile in the indigenous plant species studied. It appears from this work that long-term exposure to episodes of artificial rainfall of pH 3.2, or to acid precipitation at ambient pH levels, may alter the seasonal patterns in tissue metal concentrations of vascular plants. An enhanced retention of Mg and Zn in senescent leaves of deciduous species was observed. Foliar leaching of K on exposure to acid deposition may not be adequately compensated by root uptake.


Metal Concentration Vascular Plant Seasonal Pattern Acid Deposition Deciduous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamlid, D., Venn, K. and Frogner, T.: 1992, ‘Correlations Between Mineral Nutrients in Needled and Soil at the Intensive Monitored Forest Plots in Norway’, Research paper of Skogforsk 11/92 Norwegian Forest Research Institute, Ås, Norway, 100 pp.Google Scholar
  2. Abrahamsen, G., Bjor, K., Homtvedt, R. and Tveite, B.: 1976, ‘Effects of Acid Precipitation on Coniferous Forest’, in F. H. Braekke (ed.), Impact of Acid Precipitation of Forest and Freshwater Ecosystems in Norway, SNSF-project, FR 6/76, pp. 37–63.Google Scholar
  3. Abrahamsen, G.: 1980, ‘Acid Precipitation, Plant Nutrients and Forest Growth’, in D. Drabøs and A. Tollan (eds.), Ecol. ImpactAcidPrecip., Proc. Int. Conf. SNSF-project, Oslo-Ås, 1980, pp. 58–63.Google Scholar
  4. Adams, C. M. and Hutchinson, T. C.: 1984, New Phytol 97, 463–478.Google Scholar
  5. Adams, C. M. and Hutchinson, T. C.: 1987, New Phytol 106, 437–456.Google Scholar
  6. Amundsen, C. E., Hanssen, J. E., Semb, A. and Steinnes, E.: 1992, Atmos. Environ 26A(7), 1309–1324.Google Scholar
  7. Carlson, C. L. and Ragsdale, H. L.: 1988, Water, Air, and Soil Pollut. 42, 329–339.Google Scholar
  8. Chapin, F. S. III: 1980, Ann. Rev. Ecol. Syst. 11, 233–260.Google Scholar
  9. Evans, L. S., Curry, T. M. and Levin, K. F.: 1981, New Phytol. 88, 403–420.Google Scholar
  10. Gaber, B. A. and Hutchinson, T. C.: 1988a, Can. J. Bot. 66, 1877–1882.Google Scholar
  11. Gaber, B. A. and Hutchinson, T. C.: 1988b, Can. J. Bot. 66, 2445–2451.Google Scholar
  12. Gjengedal, E.: 1992, ‘Uptake and Mobility of Metals in Naturally Growing Plant Species in Catchments Subjected to Long-Term Experimental Changes in Soil Acidification’, Thesis, Dept. of Chemistry, University of Trondheim, AVH, Norway.Google Scholar
  13. Gosz, J. R., Likens, G. E. and Bormann, F. H. 1973, Ecol. Monogr 43, 173–191.Google Scholar
  14. Hecht-Buchholz, C. and Foy, C. D.: 1981, Plant Soil 63, 93–95.Google Scholar
  15. Hecht-Buchholz, C., Jorns, C. A. and Keil, P.: 1987, J. Plant Nutr. 10, 1103–1110.Google Scholar
  16. Helmisaari, H.-S., 1990, Scand. J. For. Res. 5, 177–193.Google Scholar
  17. Hutchinson, T. C., Adams, C. M. and Gaber, B. A.: 1986, Water, Air, Soil Pollut. 31, 475–484.Google Scholar
  18. Kabata-Pendias, A. and Pendias, H.: 1984, Trace Elements in Soil and Plants, CRS Press Inc., Florida.Google Scholar
  19. Leonardi, S. and Flückiger, W.: 1989, in J. B. Bucher and I. Bucher-Wallin (eds.), Air Pollution and Forest Decline, Proc. Int. Conf. IUFRO P2.05, Interlaken, Oct. 1988, Birmensdorf, pp. 470–473.Google Scholar
  20. Lid, J.: 1979, Norsk og svensk flora, Andre utg»va, Det norske samlaget, Oslo, 808 pp.Google Scholar
  21. Lotse, E. and Otabbong, E.: 1985, ‘Physiochemical Properties of Soils at Risdalsheia and Sogndal: Rain Project’, Norwegian Institute for Water Research, Acid Rain Research Report 8/1985, 48 pp.Google Scholar
  22. Lovett, G. M., Lindberg, S. E., Richter, D. D. and Johnson, D. W.: 1985, Can. J. For. Res 15, 1055–1060.Google Scholar
  23. Mecklenburg, R. A. and Tukey, H. B. Jr.: 1964, Plant Physiol. 39, 533–535.Google Scholar
  24. Mengel, K. and Kirkby, E. A.: 1982, Principles of Plant Nutrition, 3rd Edition, International Potash Institute, Bern, 655 pp.Google Scholar
  25. Nambiar, E. K. S.: 1990/91, Water, Air, and Soil Pollut. 54, 209–230.Google Scholar
  26. Nygaard, P. H. and Abrahamsen, G.: 1991, Plant Soil 131, 151–160.Google Scholar
  27. OECD (Organisation for Economic Co-operation and Development): 1977, The OECD Programme on Long Range Transport of Air Pollutants. Measurements and Findings, Paris, France.Google Scholar
  28. Oren, R., Werk, K. S., Schulze, E.-D., Mayer, J., Schneider, B. U. and Schramel, P.: 1988, Oecologia (Berlin) 77, 151–162.Google Scholar
  29. Pugnaire, F. I. and Chapin, F. S. III: 1992, Oecologia 90, 120–126.Google Scholar
  30. Rehfuess, K. E.: 1981, Forew. Cbl. 100, 363–381.Google Scholar
  31. Scherbatskoy, T. and Klein, R. M.: 1983, J. Environ. Qual. 12(2), 189–195.Google Scholar
  32. Schimanski, C.: 1973, Z. Pftanzenermhr. Bodenk. 136, 68–81.Google Scholar
  33. SPSS Inc: 1988, SPSS-X User's Guide. 3rd Edition. McGraw-Hill, NY, 1072 pp.Google Scholar
  34. Steinnes, E., Solberg, W., Petersen, H. M. and Wren, C. D.: 1989, Water, Air, and Soil Pollut. 45, 207–218.Google Scholar
  35. Thacker, D. J., Rutherford, G. K. and van Loon, G. W.: 1987, Can. J. For. Res. 17, 1138–1143.Google Scholar
  36. Tomlinson, G. H.: 1990/91, Water, Air, and Soil Pollut. 54, 61–74.Google Scholar
  37. Tukey, H. B. Jr.: 1970, Annu. Rev. Plant Physiol. 21, 305–324.Google Scholar
  38. Tveite, B., Abrahamsen, G. and Stuanes, A. O.: 1990/91, Water, Air, and Soil Pollut. 54, 409–422.Google Scholar
  39. Tyler, G.: 1981, Water, Air, and Soil Pollut. 15, 353–369.Google Scholar
  40. Tyree, M. T., Flanagan, L. B. and Adamson, N.: 1987, ‘Response of Trees to Drought’, in T. C. Hutchinson and K. M. Meema (eds.), Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, NATO ASI Series, Vol. G16, Springer-Verlag, Berlin Heidelberg, pp. 201–216.Google Scholar
  41. Wood, T. and Bormann, F. H.: 1975, Ambio 4(4), 169–171.Google Scholar
  42. Wood, T. and Bormann, F. H.: 1977, Water, Air, and Soil Pollut. 7, 479–488.Google Scholar
  43. Wright, R. F., Lotse, E. and Semb, A.: 1988, Nature 334, 670–675.Google Scholar
  44. Zöttl, H. W., Hüttl R. F., Fink, S., Tomlinson, C. H. and Wisniewski, J.: 1989, Water, Air, and Soil Pollut. 48. 87–109.Google Scholar
  45. Zimdahl, R. L.: 1976, J. Air. Pollut. Control Assoc. 26(7), 655–660.Google Scholar
  46. Zimmerman, R., Oren, R., Schulze, E.-D. and Werk, K. S.: 1988, Oecologia (Berlin) 76, 513–518.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Elin Gjengedal
    • 1
  1. 1.Dept. of ChemistryUniversity of Trondheim, AVHDragvollNorway

Personalised recommendations