Human Genetics

, Volume 54, Issue 1, pp 107–110

Detection of laser-UV microirradiation-induced DNA photolesions by immunofluorescent staining

  • C. Cremer
  • T. Cremer
  • M. Fukuda
  • K. Nakanishi
Original Investigations

Summary

A low-power laser-UV microbeam of wave-length 257 nm was used for microirradiation of a small part of the nucleus of Chinese hamster cells. Following fixation in interphase or in the subsequent metaphase indirect immunofluorescent staining was performed with antiserum to photoproducts of DNA treated with far UV light.

The results show that antibodies specific for UV-irradiated DNA can be used for a direct detection of laser-UV microirradiation-induced DNA photolesions. The potential usefulness of this method for investigation of the spatial arrangement of chromosomes in the interphase nucleus is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amacher, D. E., Elliott, J., A., Lieberman, M. W.: Differences in removal of acetylaminofluorene and pyrimidine dimers from the DNA of cultured mammalian cells. Proc. Natl. Acad. Sci USA 74, 1553–1557 (1977)Google Scholar
  2. Berliner, J., Santos Mello, R., Norman, A.: Chromosomal localization of UV-induced unscheduled DNA synthesis. Radiat. Res. 68, 509–513 (1976)Google Scholar
  3. Cleaver, J. E.: Repair processes for photochemical damage in mammalian cells. In: Advances in radiation biology, Vol. 4, Lett, J. T., Adler, H., Zelle, M. (eds.), pp. 1–75. New York: Academic Press 1974Google Scholar
  4. Cleaver, J. E., Trosko, J. E.: DNA degradation products from mammalian cells irradiated with ultraviolet light. Int. J. Radiat. Biol. 15, 411–424 (1969)Google Scholar
  5. Cleaver, J. E., Thomas, G. H., Trosko, J. E., Lett, J. T.: Excision repair (dimer excision, strand breakage and repair replication) in primary cultures of eukaryotic (bovine) cells. Exp. Cell Res 74, 67–80 (1972)Google Scholar
  6. Comings, D. E.: The rationale of an ordered arrangement of chromatin in the interphase nucleus. Am. J. Hum. Genet. 20, 440–460 (1968)Google Scholar
  7. Comings, D. E.: Arrangement of chromatin in the nucleus. Hum. genet. (in press, 1979)Google Scholar
  8. Cornelis, J. J., Rommelaere, J., Urbain, J., Errera, M.: A sensitive method for measuring pyrimidine dimers in situ. Photochem. Photobiol. 26, 241–246 (1977)Google Scholar
  9. Cremer, C., Zorn, C., Cremer, T.: An ultraviolet laser microbeam for 257 nm. Microsc. Acta 75, 331–337 (1974)Google Scholar
  10. Cremer, C., Cremer, T., Zorn, C., Schoeller, L.: Effects of laser UV-microirradiation (λ=2573 Å) on proliferation of Chinese hamster cells. Radiat. Res. 66 106–121 (1976)Google Scholar
  11. Cremer, C., Cremer, T., Zorn, C., Cioreanu, V.: Partial UV-irradiation of Chinese hamster cell nuclei and detection of unscheduled DNA synthesis in interphase and metaphase. A tool to investigate the arrangement of interphase chromosomes in mammalian cells. Hoppe Seylers Z. Physiol. Chem. 360, 244–245 (1979)Google Scholar
  12. Cremer, T., Cremer, C., Zimmer, J., Zorn, C.: UV-micro-irradiation of Chinese hamster cells and postreatment with caffeine: Indication for clastogenic effects remote from the irradiation site. In: DNA repair and late effects, Riklis, E., Slor, H., Altmann, H. (eds.), (in press, 1979)Google Scholar
  13. Fukuda, M., Nakanishi, K., Mukainaka, T., Shima, A., Fujita, S.: Combination of Feulgen nuclear reaction with immunofluorescent staining for photoproducts of DNA after UV-irradiation. Acta Histochem. Cytochem. 9, 180–192 (1976)Google Scholar
  14. Inoue, M., Takebe, H.: DNA repair capacity and rate of excision repair in UV-irradiated mammalian cells. Jpn. J. Genet. 58, 285–295 (1978)Google Scholar
  15. Johnson, R. T., Sperling, K.: Pattern of ultra-violet-light-induced repair in metaphase and interphase chromosomes. Int. J. Radiat. Biol. 34, 575–582 (1978)Google Scholar
  16. Levine, L., Seaman, E., Hammerschlag, E., Van Vunakis, H.: antibodies to photoproducts of deoxyribonucleic acids irradiated with ultraviolet light. Science 153, 1666–1667 (1966)Google Scholar
  17. Lucas, C. J.: Immunological demonstration of the disappearance of pyrimidine dimers from nuclei of cultured human cells. Exp. Cell Res. 74, 480–486 (1972)Google Scholar
  18. Moreno, G.: Effects of ultraviolet micro-irradiation on different parts of the cell: II. Cytological observations and unscheduled DNA synthesis after partial nuclear irradiation. Exp. Cell Res. 65, 129–139 (1971)Google Scholar
  19. Schreck, R. R., Erlanger, B. F., Miller, O. J.: The use of antinucleoside antibodies to probe the organisation of chromosomes denatured by ultraviolet irradiation. Exp. Cell Res. 88, 31–39 (1974)Google Scholar
  20. Stack, S. M., Brown, D. B., Dewey, W. C.: Visualization of interphase chromosomes. J. Cell Sci. 26, 281–299 (1977)Google Scholar
  21. Vogel, F., Schroeder, T. M.: The internal order of the interphase nucleus. Humangenetik 25, 265–297 (1974)Google Scholar
  22. Zorn, C., Cremer, T., Cremer, C., Zimmer, J.: Laser UV-micro-irradiation of interphase nuclei and posttreatment with caffeine. A new approach to establish the arrangement of interphase chromosomes. Hum. Genet. 35, 83–89 (1976)Google Scholar
  23. Zorn, C., Cremer, C., Cremer, T., Zimmer, J.: Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp. Cell Res. 124, 111–120 (1979)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. Cremer
    • 1
  • T. Cremer
    • 2
  • M. Fukuda
    • 3
  • K. Nakanishi
    • 3
  1. 1.Institut für Humangenetik und AnthropologieUniversität FreiburgFreiburg i. Br.Federal Republic of Germany
  2. 2.Institut für Anthropologie und HumangenetikUniversität HeidelbergHeidelbergFederal Republic of Germany
  3. 3.Department of PathologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations