Theoretical and Applied Genetics

, Volume 44, Issue 6, pp 278–288 | Cite as

Genetical and ultrastructural aspects of self and cross incompatibility in interspecific hybrids between self-compatible Lycopersicum esculentum and self-incompatible L. peruvianum

  • D. De Nettancourt
  • M. Devreux
  • U. Laneri
  • M. Cresti
  • E. Pacini
  • G. Sarfatti


Cytological and genetical analyses were made of the breeding system of embryo-cultured interspecific tomato hybrids between L. esculentum and L. peruvianum. It was found that fluorescence techniques and electron microscopy allowed a distinction to be made between pollen tubes inhibited by a unilateral incompatibility reaction and pollen tubes inhibited by a self-incompatibility reaction, after self-pollination of the hybrids or after reciprocal crossing between the hybrid and the parental species. The observed differences, if real and reliable, demonstrate that unilateral incompatibility in esculentum pollen tubes is governed by a single gametophytic factor which is either linked or allelic to the S-locus. This finding is discussed with reference to recent reports that unilateral incompatibility is controlled, in peruvianum styles, by a number of different dominant genes and it is concluded that these dominant genes, the S-locus of self-incompatibility and the gametophytic factor regulating the unilateral reaction in esculentum pollen belong to the same linkage group. The strong sterility barriers which prevent practically all backcrosses between the hybrid and the parental species were shown to be independent of the factors regulating stylar incompatibility. L. peruvianum is heterozygous for the sterility genes which prevent fertilization or embryo formation when the interspecific hybrid is crossed, as pistillate parent, to different accessions of L. peruvianum. One peruvianum stock was found which, as a pollinator, was highly cross-fertile with the hybrids.

The presence of a concentric endoplasmic reticulum in inhibited pollen tubes was observed to be a constant feature of both the self- and the unilateral incompatibility reactions and was interpreted as an indication that incompatibility might lead to a general cessation of protein synthesis. Although incompatible tubes very much resemble, in this respect, the pollen tubes cultured in vitro, it seems probable, on theoretical grounds, that the inhibition of pollen tubes in incompatible styles does not result from an absence of growth promoting substances but from the presence of a metabolic inhibitor.


Pollen Tube Interspecific Hybrid Parental Species Dominant Gene Sterility Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalla, M. M. F., Hermsen, J. G. T.: Unilateral incompatibility: hypotheses, debate and its implications for plant breeding. Euphytica 21, 32–47 (1972).Google Scholar
  2. Alexander, L. J., Lincoln, R. E., Wright, V.: A survey of the genus Lycopersicon for resistance to the important tomato diseases occurring in Ohio and Indiana. Plant Dis. Reptr., Suppl. 136, 49–85 (1942).Google Scholar
  3. Brewbaker, J. L., Kwack, B. H.: The calcium ion and substances influencing pollen growth. In: Pollen Physiology and Fertilization, ed. by H. F. Linskens. Amsterdam: North-Holland Publ. Co. 1964.Google Scholar
  4. Choudhury, B.: Hybridisation between Lycopersicon esculentum Mill, and Lycopersicon peruvianum Mill. Ind. J. Hort. 16, 102–107 (1959).Google Scholar
  5. Davies, D. R., Wall, E. T.: Gamma radiation and interspecific incompatibility in plants. In: Effects of ionizing radiations on seeds, IAEA Symposium, Vienna 1961.Google Scholar
  6. Dereuddre, J.: Sur la présence de groupes de saccules appartenant au réticulum endoplasmique dans les cellules des ébauches foliaires en vie ralentie de Betula verrucosa Ehrh. C. R. Acad. Sci., Paris, 273 (D), 2239 to 2242 (1971).Google Scholar
  7. Günther, E., Herrmann, H., Hoffmann, M.: Untersuchungen zur Selbstinkompatibilität bei Lycopersicum peruvianum (L.) Mill. Biol. Zbl. 87, 471–479 (1968).Google Scholar
  8. Günther, E., Jüttersonke, B.: Untersuchungen über die Kreuzungsinkompatibilität zwischen Lycopersicon peruvianum (L.) Mill, und Lycopersicon esculentum Mill, und den reziproken Bastarden. Biol. Zbl. 90, 561–574 (1971).Google Scholar
  9. Hoffmann, M.: Induktion und Analyse von selbstkompatiblen Mutanten bei Lycopersicon peruvianum (L.) Mill. I. Induktion und Vererbung der Selbstfertilität. Biol. Zbl. 88, 731–736 (1969).Google Scholar
  10. Hogenboom, N. G.: Breaking breeding barriers in Lycopersicon. 1. The genus Lycopersicon, its breeding barriers and the importance of breaking these barriers. Euphytica 21, 221–227 (1972a).Google Scholar
  11. Hogenboom, N. G.: Breaking breeding barriers in Lycopersicon. 2. Breakdown of self-incompatibility in L. peruvianum (L.) Mill. Euphytica 21, 228–243 (1972b).Google Scholar
  12. Hogenboom, M. G.: Breaking breeding barriers in Lycopersicon. 3. Inheritance of self-compatibility in L. peruvianum (L.) Mill. Euphytica 21, 244–256 (1972c).Google Scholar
  13. Hogenboom, N. G.: Breaking breeding barriers in Lycopersicon. 5. The inheritance of the unilateral incompatibility between L. peruvianum (L.) Mill, and L. esculentum Mill, and the genetics of its breakdown. Euphytica 21, 405–414 (1972d).Google Scholar
  14. Jensen, W. A., Fisher, D. B.: Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78, 158–183 (1968).Google Scholar
  15. Kroes, H. W.: An enzyme theory of self-incompatibility. Incompatibility Newsletter 2, 5–14 (1973).Google Scholar
  16. Lamm, R.: Self-incompatibility in Lycopersicum peruvianum Mill. Hereditas 36, 509–511 (1950).Google Scholar
  17. Lesley, M. M.: A cytological basis for sterility in tomato hybrids. Evidence for an inversion in one chromosome of the F1 between Lycopersicon esculentum var. Pearson and L. peruvianum P. I. 126946. J. Hered. 41, 26–28 (1950).Google Scholar
  18. Lewis, D., Crowe, L. K.: Unilateral interspecific incompatibility in flowering plants. Heredity 12, 233 to 256 (1958).Google Scholar
  19. Lincoln, R. E., Cummins, G. B.: Septoria blight resistance in the tomato. Phytopathology 39, 647–655 (1949).Google Scholar
  20. Linskens, H. F., Essser, K. L.: Über eine spezifische Anfärbung der Pollenschläuche im Griffel und die Zahl der Kallosepfropfen nach Selbstung und Fremdung. Naturwiss. 44, 1–2 (1957).Google Scholar
  21. Majid, R., Swaminathan, M. S., Iyer, R. D.: Production and cytogenetic analysis of interspecific in Lycopersicon. Ind. J. Genet. a. Pl. Breed. 28, 275–286 (1968).Google Scholar
  22. Martin, F. W.: Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34, 125–128 (1958).Google Scholar
  23. Martin, F. W.: The inheritance of self-incompatibility in hybrids of Lycopersicum esculentum Mill × L. chilense Dun. Genetics 46, 1443–1454 (1961a).Google Scholar
  24. Martin, F. W.: Complex unilateral hybridization in Lycopersicon hirsutum. Proc. Nat. Acad. Sci. 47, 855 to 857 (1961b).Google Scholar
  25. Martin, F. W.: The inheritance of unilateral incompatibility in Lycopersicon hirsutum. Genetics 50, 451 to 469 (1964).Google Scholar
  26. Martin, F. W.: The genetic control of unilateral incompatibility between two tomato species. Genetics 56, 391–398 (1967).Google Scholar
  27. Martin, F. W.: The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60, 101–109 (1968).Google Scholar
  28. McGuire, D. C., Rick, C. M.: Self-incompatibility in species of Lycopersicon sect. Eriopersicon and hybrids with L. esculentum. Hilgardia 23, 101–124 (1954).Google Scholar
  29. Nettancourt, D. de, Devreux, M., Bozzini, A., Cresti, M., Pacini, E., Sarfatti, G.: Ultrastructural aspects of self-incompatibility mechanism in Lycopersicum peruvianum Mill. J. Cell Sci. 12, 403–419 (1973a).Google Scholar
  30. Nettancourt, D. de, Devreux, M., Laneri, U., Pacini, E., Cresti, M., Sarfatti, G.: Ultrastructural aspects of unilateral interspecific incompatibility between Lycopersicum peruvianum and Lycopersicum esculentum. Proc. Conf.: From ovule to seed, Siena (Italy) Oct. 1972, Caryologia 25, suppl., 207–217 (1973b).Google Scholar
  31. Nettancourt, D. de, Ecochard, R.: Effects of chronic irradiation upon a self-incompatible clone of Lycopersicum peruvianum. Theoret. Appl. Genet. 38, 289–293 (1968).Google Scholar
  32. Nettancourt, D. de, Ecochard, R., Perquin, M. D. G., Van der Drift, T., Westerhof, M.: The generation of new S-alleles at the incompatibility locus of Lycopersicum peruvianum Mill. Theoret. Appl. Genet. 41, 120 to 129 (1971).Google Scholar
  33. Nirk, H.: Interspecific hybrids of Lycopersicon. Nature (Lond.) 184, 1819 (1959).Google Scholar
  34. Pandey, K. K.: A theory of S-gene structure. Nature (Lond.) 196, 236–238 (1962).Google Scholar
  35. Porte, W. S., Walker, H. B.: A cross between Lycopersicon esculentum and disease-resistant L. peruvianum. Phytopathology 35, 931–933 (1945).Google Scholar
  36. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).Google Scholar
  37. Rick, C. M., Butler, L.: Cytogenetics of the tomato. Advances in Genetics 8, 267–382 (1956).Google Scholar
  38. Shih, C. Y., Rappaport, L.: Regulation of bud rest in tubers of potato, Solanum tuberosum L. VIII. Early effects of gibberellin A3 and abscisic acid on ultrastructures. Plant Physiol. 48, 31–35 (1971).Google Scholar
  39. Smith, P. G.: Embryo culture of tomato species hybrid. Proc. Amer. Soc. Hort. Sci. 44, 413–416 (1944).Google Scholar
  40. Van Went, J. L.: The ultrastructure of the fertilized embryo sac of Petunia. Act. Bot. Neerl. 19, 468–480 (1970).Google Scholar
  41. Vazart, J.: Dégénérescence d'une synergide et pénétration du tube pollinique dans le sac embryonnaire de Linum usitatissimum. Ann. Univ. A.R.E.R.S. Reims 9, 89–97 (1971).Google Scholar
  42. Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4, 475–478 (1958).Google Scholar
  43. Yamakawa, K.: Effect of chronic gamma radiation on hybridization between Lycopersicon esculentum and L. peruvianum. Gamma Field Symposia No 10, Inst. Rad. Breeding, Japan, 11–31 (1971).Google Scholar
  44. Yeager, A. F., Purinton, H. J.: Lycopersicon peruvianum as a parent in the development of high ascorbic acid tomato varieties. Proc. Am. Soc. Hort. Sci. 48, 403–405 (1946).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. De Nettancourt
    • 1
    • 2
  • M. Devreux
    • 1
  • U. Laneri
    • 1
  • M. Cresti
    • 3
  • E. Pacini
    • 3
  • G. Sarfatti
    • 3
  1. 1.Laboratorio Applicazioni Agricoltura del C.N.E.N., C.S.N.Casaccia, RomaItaly
  2. 2.Services de BiologieCommunautés EuropéennesBruxellesBelgium
  3. 3.Laboratory of Electron MicroscopyIstituto di Botanica dell'Universitá di SienaItaly

Personalised recommendations