Human Genetics

, Volume 51, Issue 1, pp 79–91 | Cite as

Detection of rare major genes in lipid levels

Original Investigations

Summary

A statistical test of polygenic inheritance (TPI) against the alternative of a rare major gene is presented. It is designed for a random sample of quantitative observations on index cases and siblings of those index cases (probands) selected on the basis of the observed measurements of these probands. The test focuses on an increase of the variance of siblings of probands over its value under polygenic inheritance, such an increase being expected in the presence of a major gene producing a shift of the quantitative observations. Certain data on lipids are then analyzed by this test. A major gene can tentatively be confirmed for triglycerides but not for cholesterol. In addition, the values of all index cases are subjected to an analysis of a mixture of normal distributions (NOCOMP computer program), resulting in a significant second component for triglycerides but not for cholesterol. For both TPI and NOCOMP, the exponent in a power transformation is estimated by maximum likelihood simultaneously with all other parameters, so that these analysis methods are robust against a wide range of skewness in the data, which is demonstrated by manipulation of the observations and their reanalyis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, K., Heiberg, A.: Confirmation of linkage between familial hypercholesterolemia with xanthomatosis and the C3 polymorphism. In: Winnipeg Conference, (1977): Fourth International Workshop on Human Gene Mapping. Birth Defects: Original Article Series (in press) 1979. The National Foundation, New YorkGoogle Scholar
  2. Boman, H., Ott, J., Hazzard, W. R., Albers, J. J., Cooper, M. N., Motulsky, A. G.: Familial hyperlipidemia in 95 randomly ascertained hyperlipidemic men. Clin. Genet. 13, 108 (1978)Google Scholar
  3. Box, G. E. P., Cox, D. R.: An analysis of transformations. J. Roy. Statist. Soc. 26B, 211–252 (1964)Google Scholar
  4. Cannings, C., Thompson, E. A.: Ascertainment in the sequential sampling, of pedigrees. Clin. Genet. 12, 208–212 (1977)Google Scholar
  5. Elandt-Johnson, R. C.: Probability models and statistical methods in genetics. New York: Wiley 1971Google Scholar
  6. Elston, R. C., Namboodiri, K. K., Go, R. C. P., Siervogel, R. M., Glueck, C. J.: Possible linkage between essential familial hypercholesterolemia and third complement component (C3). In: Baltimore Conference (1975): Third International Workshop on Human Gene Mapping. Birth Defects: Original Article Series, XII: 7, 1976. The National Foundation, New YorkGoogle Scholar
  7. Fain, P. R.: Characteristics of simple sibship variance tests for the detection of major loci and application to height, weight and spatial performance. Ann. Hum. Genet. 42, 109–120 (1977)Google Scholar
  8. Fain, P. R., Ott, J.: Heterogeneity of within-sibship, variance as a test of the major gene hypothesis. (Abstract.) In: International Congress Series no. 397, p. 180. Amsterdam: Excerpta Medica 1977Google Scholar
  9. Felsenstein, J.: Estimation of number of loci controlling variation in a quantitative character. (Abstract.) Genetics 74, s78 (1973)Google Scholar
  10. Fredrickson, D. R., Goldstein, J. L., Brown, M. S.: The familial hyperlipoproteinemias. In: The metabolic basis of inherited disease, 4th ed., Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S. (eds.). New York: McGraw-Hill 1978Google Scholar
  11. Goldstein, J. L., Schrott, H. G., Hazzard, W. R., Bierman, E. L., Motulsky, A. G.: Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52, 1544–1568 (1973)Google Scholar
  12. Harris, H., Whittaker, M., Lehmann, H., Silk, E.: The pseudocholinesterase variants. Esterase levels and dibucaine numbers in families selected through suxamethonium sensitive individuals. Acta Genet. 10, 1–16 (1960)Google Scholar
  13. Hasselblad, V.: Estimation of parameters for a mixture of normal distributions. Technometrics 8, 431–444 (1966)Google Scholar
  14. Lange, K., Westlake, J., Spence, M. A.: Extensions to pedigree analysis. III. Variance components by the scoring method. Ann. Hum. Genet. 39, 485–491 (1976)Google Scholar
  15. Mérat, P.: Distributions de fréquences interprétation du déterminisme génétique des caractères quantitatifs et recherche, de “gènes majeurs”. Biometrics 24, 277–293 (1968)Google Scholar
  16. Morton N. E., Rao, D. C.: Causal analysis of family resemblance. In: Genetic analysis of common diseases and applications to predictive factors in coronary disease, Sing, C. F., Skolnick, M. (eds.), pp. 431–452. New York: Alan R. Liss 1979Google Scholar
  17. Morton, N. E., MacLean, C. J., Kagan, A., Gulbrandsen, C. L., Rhoads, G. G., Yee, S., Lew, R.: Comingling in distributions of lipids and related variables. Am. J. Hum. Genet. 29, 52–59 (1977)Google Scholar
  18. Motulsky, A. G.: The genetics of abnormal drug responses. Ann. NY Acad. Sci. 123, 167–177 (1965)Google Scholar
  19. Namboodiri, K. K., Elston, R. C., Glueck, C. J., Fallat, R., Buncher, C. R., Tsang, R.: Bivariate analyses of cholesterol and triglyceride levels in families in which probands have type IIb lipoprotein phenotype. Am. J. Hum. Genet. 27, 454–471 (1975)Google Scholar
  20. Ott, J.: Counting methods (EM algorithm) in human pedigree analysis: linkage and segregation analysis. Ann. Hum. Genet. 40, 443–454 (1977)Google Scholar
  21. Ott, J.: Comment in: Genetic epidemiology, Morton, N. E., Chung, C. (eds.) p. 235. New York: Academic Press 1978aGoogle Scholar
  22. Ott, J.: Ascertainment in the Seattle lipid studies. In: Genetic analysis of common diseases and applications to predictive factors in coronary disease. Sing, C. F., Skolnick, M. (eds.), pp. 383–388. New York: Alan R. Liss 1979Google Scholar
  23. Ott, J., Schrott, H. G., Goldstein, J. L., Hazzard, W. R., Allen, F. H. Jr., Falk, C. T., Motulsky, A. G.: Linkage studies in a large kindred with familial hypercholesterolemia. Am. J. Hum. Genet. 26, 598–603 (1974)Google Scholar
  24. Penrose, L. S.: Effects of, additive genes at many loci compared with those of a set of alleles at one locus in parent-child and sib correlations. Ann. Hum. Genet. 33, 15–21 (1969)Google Scholar
  25. Rao, C. R.: Linear statistical inference and its applications. New York: Wiley 1973Google Scholar
  26. Schrott, H. G., Goldstein, J. L., Hazzard, W. R., McGoodwin, M. M., Motulsky, A. G.: Familial hypercholesterolemia in a large kindred: evidence for a monogenic mechanism. Ann. Intern. Med. 76, 711–720 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. Ott
    • 1
  1. 1.Center for Inherited DiseasesUniversity of WashingtonSeattleUSA
  2. 2.Statistical Office of the CityZürichSwitzerland

Personalised recommendations