Bulletin of Volcanology

, Volume 54, Issue 2, pp 93–125 | Cite as

Volcán Quizapu, Chilean Andes

  • Wes Hildreth
  • Robert E Drake


Quizapu is a flank vent of the basalt-to-rhyodacite Holocene stratocone, Cerro Azul, and lies at the focus of a complex Quaternary volcanic field on the Andean volcanic front. The Quizapu vent originated in 1846 when 5 km3 of hornblende-dacite magma erupted effusively with little accompanying tephra. Between ∼ 1907 and 1932, phreatic and strombolian activity reamed out a deep crater, from which 4 km3 of dacite magma identical to that of 1846 fed the great plinian event of 10–11 April 1932. Although a total of >9 km3 of magma was thus released in 86 years, there is no discernible subsidence. As the pre-plinian crater was lined by massive lavas, 1932 enlargement was limited and the total plinian deposit contains only ∼ 0.4 wt % lithics. Areas of 5-cm and 1-cm isopachs for compacted 1932 fallout are about half of those estimated in the 1930's, yielding a revised ejecta volume of ∼9.5 km3. A strong inflection near the 10-cm isopach (downwind ∼110 km) on a plot of log Thickness vs Area1/2 reflects slow settling of fine plinian ash — not of coignimbrite ash, as the volume of pyroclastic flows was trivial (<0.01 km3). About 17 vol.% of the fallout lies beyond the 1-cm isopach, and ∼ 82 wt% of the ejecta are finer than 1 mm. A least 18 hours of steady plinian activity produced an exceptionally uniform fall deposit. Observed column height (27–30 km) and average mass eruption rate (1.5x108 kg/s) compare well with values for height and peak intensity calculated from published eruption models. The progressive “aeolian fractionation” of downwind ash (for which Quizapu is widely cited) is complicated by the large compositional range of 1932 juvenile pumice (52–70% SiO2). The eruption began with andesitic scoria and ended with basaltic scoria, but >95% of the ejecta are dacitic pumice (67–68% SiO2); minor andesitic scoria and frothier rhyodacite pumice (70% SiO2) accompanied the dominant dacite. Phenocrysts (pl>hb∼opx>mt>ilm∼cpx) are similar in both abundance and composition in the 1846 (effusive) and 1932 (plinian) dacites. Despite the contrast in mode of eruption, bulk compositions are also indistinguishable. The only difference so far identified is a lower range of δ D values for 1846 hornblende, consistent with pre-eruptive degassing of the effusive batch.


Tephra Pyroclastic Flow Fall Deposit Volcanic Front Strombolian Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Mineral 73:714–726Google Scholar
  2. Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J Volcanol Geotherm Res 18:57–115Google Scholar
  3. Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112Google Scholar
  4. Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater lake, Oregon. Contrib Mineral Petrol 98:224–256Google Scholar
  5. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61Google Scholar
  6. Bacon CR, Adami LH, Lanphere MA (1989) Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially fused granitoid walls, Crater Lake, Oregon. Earth Planet Sci Lett 96:199–208Google Scholar
  7. Bacon CR, Newman S, Stolper EM (1988) Preeruptive volatile content, climactic eruption of Mount Mazama, Crater Lake, Oregon. Geol Soc Am Abst Prog 20/7:A248Google Scholar
  8. Blake S, Ivey GN (1986) Magma mixing and the dynamics of withdrawal from stratified reservoirs. J Volcanol Geotherm Res 27:153–178Google Scholar
  9. Bobillier C (1932) La erupción del Volcán Quizapu en abril de 1932. Bol Serv Sismol Univ Chile 22:33–39Google Scholar
  10. Bobillier C (1934) Erupciones volcánicas en Chile. Bull Volcanol 23–26:153–178. [Author's name incorrectly given as Mr. Robillier]Google Scholar
  11. Brazier S, Sparks RSJ, Carey SN, Sigurdsson H, Westgate JA (1983) Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301:115–119Google Scholar
  12. Bruggen J (1933) Der Aschen- und Bimsstein-Ausbruch des Vulkans Quizapu in der chilenischen Kordillere. Z Vulkanol 15:100–104Google Scholar
  13. Bruggen J (1950) Fundamentos de la Geología de Chile. Instituto Geográfico Militar, Santiago, 374 pGoogle Scholar
  14. Bustos Navarrete J (1932) Die letzte vulkanische Krise. Der Ausbruch des Quizapu im April dieses Jahres. Andina (Zeitschrift für Naturfreunde und Wanderer, Mitteilungen der Sektion Chile) 10/2:24–26Google Scholar
  15. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St Helens volcano. J Geophys Res 87:7061–7072Google Scholar
  16. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol Soc Am Bull 99:303–314Google Scholar
  17. Carey S, Sigurdsson H (1989) The intensity of plinian eruptions. Bull Volcanol 51:28–40Google Scholar
  18. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispesal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125Google Scholar
  19. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703Google Scholar
  20. Dartayet M (1932) Observacíon de la lluvia de cenizas del 11 de abril de 1932 en La Plata. Rev Astron (Buenos Aires) 4:183–187Google Scholar
  21. Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730Google Scholar
  22. Domeyko I (1903) Jeolójia, vol 5. Imprenta Cervantes, SantiagoGoogle Scholar
  23. Drake RE (1976) Chronology of Cenozoic igneous and tectonic events in the central Chilean Andes — latitudes 35°30′ to 36°S. J Volcanol Geotherm Res 1:265–284Google Scholar
  24. Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 101:245–259Google Scholar
  25. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602Google Scholar
  26. Fierstein J, Hildreth W (1991) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol (in review)Google Scholar
  27. Fierstein J, Nathenson M (1991) Another look at the calculation of fallout tephra volumes. Bull Volcanol (in press)Google Scholar
  28. Friedlaender J (1933) Der grosse Ausbruch in der chilenisch-argentinischen Kordillere in April 1932. Z Vulkanol 15:116–123Google Scholar
  29. Frost BR, Lindsley DH, Andersen DJ (1988) Fe-Ti oxide-silicate equilibria: Assemblages with fayalitic olivine. Am Mineral 73:727–740Google Scholar
  30. Fuenzalida H (1941) Distribución de los volcanes del grupo de los Descabezados. Bol Museo Nac Hist Nat (Santiago) 19:19–30Google Scholar
  31. Fuenzalida H (1942) El Volcán Descabezado Grande. Bol Museo Nac Hist Nat (Santiago) 20:35–50Google Scholar
  32. Fuenzalida H (1943) El Cerro Azul y el Volcán Quizapu. Bol Museo Nac Hist Nat (Santiago) 21:37–53Google Scholar
  33. Godoy P (1984) Geología del Grupo Volcanico Descabezado Grande — Los Hornitos. Taller de Titulo II, GL-698, Univ Chile (Santiago), Depto Geol Geofis, 125 pGoogle Scholar
  34. González Ferrán O, Vergara M (1962) Reconocimiento geológico de la Cordillera de los Andes entre los paralelos 35° y 38° latitud sur. Univ Chile, Inst Geol, Publ 24, 121 pGoogle Scholar
  35. Grunder AL (1987) Low δ18 silicic volcanic rocks at the Calabozos caldera complex, southern Andes. Contrib Mineral Petrol 95:71–81Google Scholar
  36. Grunder AL, Mahood GA (1988) Physical and chemical models of zoned silicic magmas: The Loma Seca Tuff and Calabozos caldera, Southern Andes. J Petrology 29:831–867Google Scholar
  37. Hildreth W (1987) New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Bull Volcanol 49:680–693Google Scholar
  38. Hildreth W (1991) Timing of caldera collapse at Mount Katmai in response to magma withdrawal toward Novarupta. Geophys Res Lett, in pressGoogle Scholar
  39. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489Google Scholar
  40. Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. Geol Soc Am Bull 95:45–54Google Scholar
  41. Huebner JS, Sato M (1970) The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. Am Mineral 55:934–952Google Scholar
  42. Jones HS (1932) The Andean eruption and sunset and sunrise glows in South Africa. Nature 130:279Google Scholar
  43. Kittl E (1933) Estudio sobre los fenómenos volvánicos y material caído durante la erupción del grupo del “Descabezado” en el mes be abril de 1932. Anal Museo Nac Hist Nat (Buenos Aires) 37:321–364Google Scholar
  44. Kobayashi T, Hayakawa Y, Aramaki S (1983) Thickness and grain-size distribution of the Osumi pumice fall deposit from the Aira caldera. Bull Volcanol Soc Japan 28:129–139Google Scholar
  45. Kreutz S, Jurek M (1932) Cendres volcaniques tombées en Avril 1932 à Buenos Aires. Polskiego Towarzystwo Geologiczna Rocznik (Krakow) 8:316–330Google Scholar
  46. Larsson W (1937) Vulkanische Asche vom Ausbruch des chilenischen Vulkans Quizapu (1932) in Argentina gesammelt. Geol Inst Upsala Bull 26:27–52Google Scholar
  47. Lindsley DH (1983) Pyroxene thermometry. Amer Mineral 68:477–493Google Scholar
  48. Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol Soc Am Bull 84:759–772Google Scholar
  49. Lunkenheimer F (1932) La erupción del Quizapu en abril de 1932. Rev Astron (Buenos Aires) 4:173–182Google Scholar
  50. Maass A (1932) 14 Tage in der Kordillere von Talca, der Zone der tätigen Vulkane. Andina (Zeitschrift für Naturfreunde und Wanderer, Mitteilungen der Sektion Chile) 10/2:27–37Google Scholar
  51. Merzbacher C, Eggler DH (1984) A magmatic geohygrometer: applications to Mount St Helens and other dacitic magmas. Geology 12:587–590Google Scholar
  52. Moreno Roa H (1982) Descabezado Grande Volcano, Central Chile. SEAN Bulletin (Smithsonian Inst) 7/3:17Google Scholar
  53. Newman S, Epstein S, Stolper E (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A.D. eruption of the Mono Craters, California: Contraints on degassing phenomena and initial volatile content. J Volcanol Geotherm Res 35:75–96Google Scholar
  54. Pyle DM (1989) The thickness, volume, and grainsize of tephra fall deposits. Bull Volcanol 51:1–15Google Scholar
  55. Reck H (1933) Der Ausbruch des Quizapu vom 10–11 April 1932 und seine Folgen. Naturwissenschaften 21:617–624Google Scholar
  56. Riso Patrón L (1917) Las exploraciones del señor Mauricio Vogel en las cordilleras del Centro. Rev Chilena d Hist Geogr 23:371–381Google Scholar
  57. Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St Helens, 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res 93:11949–11959Google Scholar
  58. Sarna-Wojcicki AM, Shipley S, Waitt R Jr, Dzurisin D, Wood S (1981) Areal distribution, thickness, mass, volume, and grainsize of airfall ash from the six major eruptions of 1980. US Geol Surv Prof Pap 1250:577–600Google Scholar
  59. Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in 79 A.D. Nat Geogr Res 1:332–387Google Scholar
  60. Simkin T, Siebert L, McClelland L, Bridge D, Newhall C, Latter JH (1981) Volcanoes of the World. Smithsonian Inst, Washington, 233 pGoogle Scholar
  61. Sorem RK (1982) Volcanic ash clusters: Tephra rafts and scavengers. J Volcanol Geotherm Res 13:63–71Google Scholar
  62. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15Google Scholar
  63. Stormer JC (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Mineral 68:586–594Google Scholar
  64. Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240Google Scholar
  65. Taylor HP Jr, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:227–271Google Scholar
  66. Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545Google Scholar
  67. Vogel M (1913) Reisebilder aus den Hochkordilleren der Provinz Talca, speziell aus der Zone des tätigen Vulkans. Verth Dtsch Wissen Vereins zu Santiago de Chile 6:263–313Google Scholar
  68. Vogel M (1920) Reisebilder aus den Hochkordilleren der Provinz Talca: Ergebnisse meiner dritten Reise 1916. Verh Dtsch Wissen Vereins zu Santiago de Chile 6:454–480Google Scholar
  69. Vogel M (1933) Bericht über vulkanische Vorgänge in Mittelchile und en angrenzenden Provinzen Argentiniens, besonders über die Vulkane Descabezado Grande und Cerro Azul (Quizapu). Z Vulkanol 15:105–115Google Scholar
  70. Walker GPL (1973) Explosive volcanic eruptions — a new classification scheme. Geol Rundsch 62:431–446Google Scholar
  71. Walker GPL (1980) The Taupo pumice: Product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94Google Scholar
  72. Walker GPL (1981a) Plinian eruptions and their products. Bull Volcanol 44:223–240Google Scholar
  73. Walker GPL (1981b) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo volcanic centre. NZ J Geol Geophys 24:305–324Google Scholar
  74. Walker GPL, Croasdale R (1971) Two plinian-type eruptions in the Azores. J Geol Soc London 127:17–55Google Scholar
  75. Wilson L, Walker GPL (1987) Explosive volcanic eruptions — VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89:657–679Google Scholar
  76. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions — IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J R Astron Soc 63:117–148Google Scholar
  77. Williams S, Self S (1983) The October 1902 plinian eruption of Santa María volcano, Guatemala. J Volcanol Geotherm Res 16:33–56Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Wes Hildreth
    • 1
  • Robert E Drake
    • 2
  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.Geochronology CenterInstitute of Human OriginsBerkeleyUSA

Personalised recommendations