Journal of Mathematical Biology

, Volume 19, Issue 2, pp 169–200

Asymptotic behavior of some stochastic difference equation population models

  • S. Ellner
Article

Abstract

We consider a general class of Markov population models formulated as stochastic difference equations. The population density is shown to converge either to 0, to +∞, or to a unique stationary distribution concentrated on (0, +∞), depending on the signs of the mean log growth rates near 0 and +∞. These results are applied to the Watkinson-MacDonald “bottleneck” model of annual plants with a seedbank, extended to allow for random environmental fluctuations and competition among co-occurring species. We obtain criteria for long-term persistence of single-species populations, and for coexistence of two competing species, and the biological significance of the criteria is discussed. The lamentably few applications to the problem at hand of classical limit-theory for Markov chains are surveyed.

Key words

stochastic difference equations population dynamics Markov chains stationary distribution non-equilibrium coexistence seedbanks ergodic theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo L. M. F.: On Horn's Markovian model of forest dynamics with particular reference to tropical forests. Theoret. Pop. Biol. 19, 230–250 (1981)Google Scholar
  2. Angevine, M. W., Chabot, B. F.: Seed germination syndromes in higher plants. In: Solbrig, O. T., Jain, S., Johnson, G. B. and Raven, P. L., Topics in Plant Population Biology. New York: Columbia University Press, 1979Google Scholar
  3. Bartlett, M. S.: Stochastic population models in ecology and epidemiology. London: Methuen, 1960Google Scholar
  4. Beatley, J. C.: Phenological events and their environmental triggers in Mojave desert ecosystems. Ecology 55, 856–863 (1974)Google Scholar
  5. Bierzychudek, P.: Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol. 90, 757–776 (1982)Google Scholar
  6. Chesson, P. L.: Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9, 323–347 (1978)Google Scholar
  7. Chesson, P. L.: The stabilizing effect of a random environment. J. Math. Biology 15, 1–36 (1982)Google Scholar
  8. Chesson, P. L.: Coexistence of competitors in a stochastic environment: the storage effect, pp. 188–198. In: Freedman, H. I., Strobeck, C., eds. Population Biology (Lecture Notes in Biomathematics 52). Berlin-Heidelberg-New York: Springer 1983Google Scholar
  9. Chesson, P. L., Warner, R. R.: Environmental variability promotes coexistence in lottery competitive systems. Amer. Natur. 117, 923–943 (1981)Google Scholar
  10. Cohn, H.: On the convergence of stochastically monotone sequences of random variables and some applications. J. Appl. Prob. 18, 592–605 (1981)Google Scholar
  11. Comins, H. N., Hamilton, W. D., May, R. M.: Evolutionary stable dispersal strategies. J. Theoret. Biol. 32, 205–230 (1980)Google Scholar
  12. Derrienec, Y., Lin, M.: On invariant measures and ergodic theorems for positive operators. J. Funct. Anal. 13, 252–267 (1973)Google Scholar
  13. Ellner, S.: Evolutionarily stable germination behaviors in randomly varying environments. Ph.D. thesis, Cornell University, Ithaca, N.Y. 1982Google Scholar
  14. Evenari, M., Shanan, L., Tadmor, N.: The Negev: The Challenge of a Desert. Cambridge, Mass: Harvard University Press, 1971Google Scholar
  15. Fagerström, T., Ågren, G. I.: Theory for coexistence of species differing in regeneration properties. Oikos 33, 1–10 (1979)Google Scholar
  16. Flåm, S. D.: Steady states in population models with monotone, stochastic dynamics. J. Math. Biology 13, 87–93 (1981)Google Scholar
  17. Foguel, S. R.: Existence of a σ-finite invariant measure for a Markov process on a locally compact space. Israel J. Math. 6, 1–5 (1968)Google Scholar
  18. Foguel, S. R.: The ergodic theory of Markov processes. New York: Van Nostrand Reinhold, 1969Google Scholar
  19. Foguel, S. R.: The ergodic theory of positive operators on continuous functions. Ann. Scuola. Norm. Sup. Pisa 27, 19–51 (1973)Google Scholar
  20. Fowler, N. L., Antonivics, J.: Small-scale variability in the demography of transplants of two herbaceous species. Ecology 62, 1450–1457 (1981)Google Scholar
  21. Gillespie, J.: Polymorphism in random environments. Theoret. Pop. Biol. 4, 193–195 (1973)Google Scholar
  22. Grubb, P. J.: The maintenance of species richness in plant communities. The importance of the regeneration niche. Biol. Rev. 52, 104–145 (1977)Google Scholar
  23. Hamilton, W. D.: May, R. M.: Dispersal in stable habitats. Nature 269, 578–581 (1977)Google Scholar
  24. Harper, J. L.: Population Biology of Plants. New York: Academic Press 1977Google Scholar
  25. Hartl, D. L., Cook, R. D.: Balanced polymorphism of quasineutral alleles. Theoret. Pop. Biol. 4, 163–172 (1973)Google Scholar
  26. Heckel, D. G., Roughgarden, J.: A species near its equilibrium size in a fluctuating environment can evolve a lower intrinsic rate of increase. Proc. Natl. Acad. Sci. USA, 77, 7497–7500 (1980)Google Scholar
  27. Hubbell, S. P.: Seed predation and the coexistence of tree species in tropical forests. Oikos 38, 214–229 (1980)Google Scholar
  28. Huston, M.: A general hypothesis of species diversity. Amer. Natur. 113, 81–101 (1979)Google Scholar
  29. Hutchinson, G. E.: The paradox of the plankton. Amer. Natur. 95, 137–145 (1961)Google Scholar
  30. Hutchinson, G. E. An introduction to population ecology. New Haven: Yale University Press, 1978Google Scholar
  31. Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: case of large population size. Theoret. Pop. Biol. 6, 355–382 (1974)Google Scholar
  32. Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: One-locus two-allele model. J. Math. Biol. 2, 1–17 (1975)Google Scholar
  33. Koller, D.: The survival value of germination-regulating mechanisms in the field. Herbage Abstr. 34, 1–7 (1964)Google Scholar
  34. Laslett, G. M., Pollard, D. B., Tweedie, R. I.: Techniques for establishing ergodic and recurrence properties of continuous-valued Markov chains. Naval Res. Logist. Quart. 25, 455–472 (1978)Google Scholar
  35. Levin, S. A.: Dispersion and population interactions. Amer. Natur. 114, 103–114 (1974)Google Scholar
  36. Levin, S. A.: Mechanisms for the generation and maintenance of diversity in ecological communities. In: (M. S. Bartlett and R. W. Hiorns, eds.) The Mathematical Theory of the Dynamics of Biological Populations, 2. New York: Academic Press, 1981Google Scholar
  37. Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theoret. Pop. Biol. (1984, in press)Google Scholar
  38. Lewontin, R. C., Cohen, D.: On population growth in a random environment. Proc. Natl. Acad. Sci. USA 62, 1056–1060 (1969)Google Scholar
  39. Loeve, M.: Probability theory. 4th edition. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  40. MacDonald, N., Watkinson, A. R.: Models of an annual plant population with a seedbank. J. Theor. Biol. 93, 643–653 (1981)Google Scholar
  41. Mack, R. N., Harper, J. L.: Interference in dune annuals: spatial pattern and neighborhood effects. J. Ecology 65, 345–363 (1977)Google Scholar
  42. Motro, U.: Optimal rates of dispersal. I. Haploid populations. II. Diploid populations. Theoret. Pop. Biol. 21, 394–411, 412–429 (1982)Google Scholar
  43. Neveu, J.: Existence of bounded invariant measures in ergodic theory. In: LeCam, L., Neyman, J., (eds). Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, v. II, part 2. University of California Press, Berkeley 1967Google Scholar
  44. Norman, M. F.: Markov processes and learning models. New York: Academic Press 1972Google Scholar
  45. Norman, M. F.: An ergodic theorem for evolution in a random environment. J. Appl. Probability 12, 661–672 (1975)Google Scholar
  46. Noy-Meir, I.: Desert ecosystems: environment and producers. Ann. Rev. Ecol. Syst. 4, 25–41 (1973)Google Scholar
  47. Orey, S.: Limit theorems for Markov chain transition probabilities. New York: Van Nostrand Reinhold 1971Google Scholar
  48. Pickett, S. T. A.: Non-equilibrium coexistence of plants. Bull. Torrey Bot. Club 107, 238–248 (1980)Google Scholar
  49. Pomerantz, M. J., Thomas, W. R., Gilpin, M. E.: Asymmetries in population growth regulated by intraspecific competition: empirical studies and model tests. Oecologia 47, 311–322 (1980)Google Scholar
  50. Revuz, D.: Markov chains. Amsterdam: North-Holland Publishing Company (1975)Google Scholar
  51. Rosenblatt, M.: Markov processes: Structure and asymptotic behavior. New York: Springer 1971Google Scholar
  52. Rosenblatt, M.: Recurrent points and transition functions acting on continuous functions. Z. Wahrscheinlichkeitstheorie verw. Geb. 30, 173–183 (1974)Google Scholar
  53. Sawyer, S., Slatkin, M.: Density independent fluctuations of population size. Theoret. Pop. Biol. 19, 37–51 (1981)Google Scholar
  54. Shmida, A., Ellner, S. P.: Coexistence of plant species with similar niches. Vegetatio (1984, in press)Google Scholar
  55. Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)Google Scholar
  56. Thompson, K., Grime, J. P.: Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecology 67, 893–921 (1979)Google Scholar
  57. Tuominen, P., Tweedie, R. L.: Markov chains with continuous components. Proc. London Math. Soc. 38, 89–114 (1979)Google Scholar
  58. Turelli, M.: A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theoret. Pop. Biol. 13, 244–267 (1978)Google Scholar
  59. Turelli, M.: Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theoret. Pop. Biol. 20, 1–56 (1981)Google Scholar
  60. Turelli, M., Petry, D.: Density-dependent selection in a random environment: An evolutionary process that can maintain stable population dynamics. Proc. Natl. Acad. Sci. USA. 77, 7501–7505 (1980)Google Scholar
  61. Turkington, R., Harper, J.L.: The growth, distribution and neighborhood relationships of Trifolium repens in a permanent pasture. I. Ordination, pattern, and contact. IV. Fine-scale biotic differentiation. J. Ecology 67, 201–218, 245–254 (1979)Google Scholar
  62. Tweedie, R. L.: Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stoch. Proc. Appl. 3, 385–403 (1975)Google Scholar
  63. Tweedie, R. L.: Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737–771 (1976)Google Scholar
  64. Watkinson, A. R.: Density-dependence in single-species populations of plants. J. Theor. Biol. 82, 345–357 (1980)Google Scholar
  65. Weiner, J.: A neighborhood model of annual-plant interference. Ecology 63, 1237–1241 (1982)Google Scholar
  66. White, P. S.: Pattern, process, and natural disturturbance in vegetation. Botanical Rev. 45, 229–299 (1979)Google Scholar
  67. Yahav, J. A.: On a fixed point theorem and its stochastic equivalent. J. Appl. Prob. 12, 605–611 (1975)Google Scholar
  68. Yahav, J. A.: On a Markov process generated by non-decreasing concave functions. Stoch. Proc. Appl. 4, 41–54 (1976)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • S. Ellner
    • 1
  1. 1.Department of Mathematics and Program in EcologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations