Molecular and General Genetics MGG

, Volume 236, Issue 2–3, pp 448–452 | Cite as

Size variation of rDNA clusters in the yeasts Saccharomyces cerevisiea and Schizosaccharomyces pombe

  • Philippe Pasero
  • Monique Marilley
Short Communications


The higher-order organization of rRNA genes was investigated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. We used pulsed-field gel electrophoresis (PFGE) in combination with frequent cutter endonucleases having no recognition sites within rDNA repeating units to characterize tandem arrays of ribosomal genes in these two species. Large variations in rDNA cluster length were detected in various S. cerevisiae and S. pombe strains commonly used as PFGE molecular weight markers. This wide range of variability implies that the sizes currently assessed for chromosomes bearing rRNA genes in these organisms are unreliable since they may vary within strains by several hundreds of kilobase pairs, depending on the size of the tandem arrays of rRNA genes. Consequently, there is now a lack of reliable PFGE size standards between 1.6 Mb and 4.5 Mb, even when established yeast strains with calibrated chromosomes are used.

Key words

rRNA genes Yeast Pulsed field gel electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzi E, Di Pietro A, Goffeau A, Van Heerikhuizen H, Klootwijk J (1985) The RNA polymerase I initiation site and the external transcribed spacer of the fission yeast Schizosaccharomyces pombe ribosomal RNA genes. Gene 39:165–172Google Scholar
  2. Butler DK, Metzenberg RL (1989) Premeiotic change of nucleolus organizer size in Neurospora. Genetics 122:783–791Google Scholar
  3. Butler DK, Metzenberg RL (1990) Expansion and contraction of the nucleolus organiser region of Neurospora: changes originate in both proximal and distal segments. Genetics 126:325–333Google Scholar
  4. Cantor R, Smith L, Mathew MK (1988) Pulsed-field gel electrophoresis of very large DNA molecules. Annu Rev Biophys Chem 17:287–304Google Scholar
  5. Cramer JH, Farrelly FW, Rownd RH (1976) Restriction endonuclease analysis of ribosomal DNA from S. cerevisiae. Mol Gen Genet 148:233–251Google Scholar
  6. Fan JB, Chikashige Y, Smith CL, Niwa O, Yanagida M, Cantor CR (1989) Construction of a NodI restriction map of the fission yeast Schizosaccharomyces pombe genome. Nucleic Acids Res 17:2801–2818Google Scholar
  7. Lai E, Birren BW, Clark SM, Simon MI, Hood L (1989) Pulsed field gel electrophoresis. Bio Techniques 7:34–42Google Scholar
  8. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764Google Scholar
  9. Maleszka R, Clark-Walker GD (1990) Magnification of the rDNA cluster in Kluyveromyces lactis. Mol Gen Genet 223:342–344Google Scholar
  10. Marilley M, Pasero P, Got C (1992) Molecular dissection of a specific nuclear domain: the chromatin region of the ribosomal gene cluster in Xenopus laevis. Exp Cell Res 202:87–97Google Scholar
  11. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823Google Scholar
  12. Oyen TB, Saelid G, Skuladottir GV (1978) Study of a haploid yeast strain with an unusually high rDNA content. Biochim Biophys Acta 520:88–102Google Scholar
  13. Petes TD (1979) Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci USA 76:410–414Google Scholar
  14. Petes TD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765–774Google Scholar
  15. Schaak J, Mao J, Soll D (1982) The 5.88 RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe. Nucleic Acids Res 10:2851–2863Google Scholar
  16. Schweizer E, McKechnie C, Halvorson HO (1969) The redundancy of ribosomal and transfer RNA genes in S. cerevisiae. J Mol Biol 40:261–277Google Scholar
  17. Skryabin KG, Eldarov MA, Larionov VL, Bayev AA, Klootwijk J, de Regt VCHF, Veldman GM, Planta RJ, Georgiev OI, Hadjiolov AA (1984) Structure and function of nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res 12:2955–2967Google Scholar
  18. Smith CL, Warburton PE, Gaal A, Cantor CR (1986) An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. In: Setlow JK, Hollaender A (eds) Genetic engineering, 8:45–70Google Scholar
  19. Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430Google Scholar
  20. Toda T, Nakaseko Y, Niwa O, Yanagida M (1984) Mapping of rRNA genes by integration of hybrid plasmids in Schizosaccharomyces pombe. Curr Genet 8:93–97Google Scholar
  21. Uzawa S, Yanagida M (1991) Visualization of centrometric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci 101:267–275Google Scholar
  22. Warner JR (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53:256–271Google Scholar
  23. Willard HF (1991) Evolution of alpha satellite. Curr Op Genet Dev 1:509–514Google Scholar
  24. Williams SM, Robbins LG, Cluster PD, Allard RW, Strobeck C (1990) Superstructure of the Drosophila ribosomal gene family. Proc Natl Acad Sci USA 87:3156–3160Google Scholar
  25. Zamb TJ, Petes TD (1982) Analysis of the junctions between ribosomal RNA genes and single-copy chromosomal sequences in the yeast Saccharomyces cerevisiae. Cell 28:355–364Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Philippe Pasero
    • 1
  • Monique Marilley
    • 1
  1. 1.Laboratoire de Génétique, URA CNRS 1189Faculté de MédecineMarseille cédex 5France

Personalised recommendations