Molecular and General Genetics MGG

, Volume 236, Issue 2–3, pp 355–362

The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae

  • Joris J. Hens
  • Ben J. M. Zonneveld
  • H. Yde Steensma
  • Johan A. van den Berg
Article

Summary

The nucleotide sequences of five of the six centromeres of the yeast Kluyveromyces lactis were determined. Mutual comparison of these sequences led to the following consensus: a short highly conserved box (5′-ATCACGTGA-3′) flanked by an AT-rich (±90%) stretch of ± 160 by followed by another conserved box (5′-TNNTTTATGTTTCCGAAAATTAATAT-3′).

These three elements were named K1CDEI, K1CDEII, and K1CDEIII respectively, by analogy with the situation in Saccharomyces cerevisiae. In addition, a second 100 by AT-rich (±90%) element, named K1CDE0, was found ± 150 by upstream of K1CDEI. The sequences of both K1CDEI and K1CDEIII are highly conserved between K. lactis and S. cerevisiae; however, centromeres of K. lactis do not function in S. cerevisiae and vice versa. The most obvious differences between the centromeres of the two yeast species are the length of the AT-rich CDEII, which is 161–164 by in K. lactis versus 78–86 by in S. cerevisiae and the presence in K. lactis of K1CDEO, which is not found in S. cerevisiae.

Key words

Kluyveromyces lactis Centromeric DNA element Consensus sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom KS, Carbon J (1982) Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317Google Scholar
  2. Bloom KS, Fitzgerald-Hayes M, Carbon J (1982) Structural analysis and sequence organization of yeast centromeres. Cold Spring Harbor Symp Quant Biol 47:1175–1185Google Scholar
  3. Brain RJ, Kornberg RD (1987) Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol 7:403–409Google Scholar
  4. Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5:376–380Google Scholar
  5. Casabadan MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207Google Scholar
  6. Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of NotI restriction sites. Cell 57:739–751Google Scholar
  7. Clarke L (1990) Centromeres of budding and fission yeasts. Trends Genet 6:150–154Google Scholar
  8. Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction on functional small circular chromosomes. Nature 287:504–509Google Scholar
  9. Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-basepair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere function in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349Google Scholar
  10. Dente L, Cesareni G, Cortese R (1983) pEMBL: A new family of single stranded plasmids. Nucleic Acids Res 11:1645–1655Google Scholar
  11. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395Google Scholar
  12. Dorsman JC, Van Heeswijk WC, Grivell LA (1990) Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation. Nucleic Acids Res 18:2769–2776Google Scholar
  13. Dower WJ (1988) Transformation of E. coli to extremely high efficiency by electroporation. Mol Biol Reports 6:3–4Google Scholar
  14. Enea V, Zinder ND (1982) Interference resistant mutants of phage f1. Virology 122:222–226Google Scholar
  15. Fitzgerald-Hayes M (1987) Yeast centromeres. Yeast 3:187–200Google Scholar
  16. Hadlaczky G, Prznovszky T, Cserpán I, Keresö J, Péterfy M, Kelemen I, Atalay E, Szeles A, Szelei J, Tubak V, Burg K (1991) Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Proc Natl Acad Sci USA 88:8106–8110Google Scholar
  17. Hegemann JH, Pridmore RD, Schneider R, Philippsen P (1986) Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol Gen Genet 205:305–311Google Scholar
  18. Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P (1988) Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8:2523–2535Google Scholar
  19. Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert GL, De Wachter R (1992) Phylogenetic relationships among ascomycetes and ascomycetelike yeasts as deduced from small ribosomal subunit RNA sequences. System Appl Microbiol 15:98–104Google Scholar
  20. Heus JJ, Zonneveld BJM, Steensma HY, Van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517–522Google Scholar
  21. Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921Google Scholar
  22. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  23. Jäger D (1990) Investigations and constructions with and on functional elements of Saccharomyces cerevisiae chromosomes. PhD thesis, University of Giessen, Giessen, FRGGoogle Scholar
  24. Jehn B, Niedenthal R, Hegemann JH (1991) In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: Requirements for mitotic chromosome segregation. Mol Cell Biol 11:5212–5221Google Scholar
  25. Lechner J, Carbon J (1991) A 240-kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725Google Scholar
  26. McGrew J, Diehl B, Fitzgerald-Hayes M (1986) Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6:530–538Google Scholar
  27. Mellor J, Jiang W, Funk M, Rathjen J, Barnes CA, Hinz T, Hegemann JH, Philippsen P (1990) CPF1, a yeast protein which functions in centromeres and promoters. EMBO J 9:4017–4026Google Scholar
  28. Murphy M, Fitzgerald-Hayes M (1990) Cis- and trans-acting factors involved in centromere function in Saccharomyces cerevisiae. Mol Microbiol 4:329–336Google Scholar
  29. Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J 5:1011–1021Google Scholar
  30. Ng R, Carbon J (1987) Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol 7:4522–4534Google Scholar
  31. Niedenthal R, Stoll R, Hegemann JH (1991) In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1. Mol Cell Biol 11:3545–3553Google Scholar
  32. Richards EJ, Goodman HM, Ausubel FM (1991) The centromere region of Arabidopsis thaliana chromosome 1 contains telomeresimilar sequences. Nucleic Acids Res 19:3351–3357Google Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  34. Sherman F, Fink G, Lawrence C (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  35. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27Google Scholar
  36. Sreekrishna K, Webster TD, Dickson RC (1984) Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of TOW. Gene 28:73–81Google Scholar
  37. Wanner G, Formanek H, Martin R, Herrmann RG (1991) High resolution scanning electron microscopy of plant chromosomes. Chromosoma 100:103–109Google Scholar
  38. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119Google Scholar
  39. Zonneveld BJM (1986) Cheap and simple yeast media. J Microbiol Meth 4:287–291Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Joris J. Hens
    • 1
  • Ben J. M. Zonneveld
    • 1
  • H. Yde Steensma
    • 1
  • Johan A. van den Berg
    • 1
  1. 1.Department of Cell Biology and GeneticsLeiden UniversityAL LeidenThe Netherlands

Personalised recommendations