Molecular and General Genetics MGG

, Volume 240, Issue 2, pp 159–169

Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics

  • Ann Kenton
  • Alex S. Parokonny
  • Yuri Y. Gleba
  • Michael D. Bennett
Article

Abstract

Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.

Key words

Nicotiana tabacum Amphidiploid-Molecular cytogenetics Intergenomic translocations Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl P, Cornu A, Gianinazzi S (1982) Soluble proteins as genetic markers in studies of resistance and phylogeny in Nicotiana. Phytopathology 72:80–85Google Scholar
  2. Albini SM, Schwarzacher T (1992) In situ localization of two repetitive DNA sequences to surface-spread pachytene chromosomes of rye. Genome 35:551–559Google Scholar
  3. Anamthawat-Jónsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79:721–728Google Scholar
  4. Arnoldus EPJ, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC, van der Ploeg M, Raap AK (1990) Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet 54:108–111Google Scholar
  5. Avivi L, Feldman M, Brown M (1982) An ordered arrangement of chromosomes in the somatic nucleus of common wheat, Triticum aestivum L. II. Spatial relationships between chromosomes of different genomes. Chromosoma 86:17–26Google Scholar
  6. Banks MS, Evans PK (1977) Cytological markers in different tobacco species and their hybrids. J Hered 68:395–399Google Scholar
  7. Bennett ST, Bennett MD (1992) Spatial separation of ancestral genomes in the wild grass Milium montianum Parl. Ann Bot 70:111–118Google Scholar
  8. Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101:420–424Google Scholar
  9. Bland MM, Matzinger DF, Levings CS II (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541Google Scholar
  10. Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. In: Grossman L, Moldave K (eds) Nucleic acids and protein synthesis. Methods in Enzymol 29:363–418 Academic Press, New YorkGoogle Scholar
  11. Chaleff RS, Ray TB (1984) Herbicide-resistant mutants from tobacco cell cultures. Science 223:1148–1151Google Scholar
  12. Cox AV, Bennett ST, Parokonny AS, Kenton AY, Callimassia MA, Bennett MD (1993) Comparison of plant telomere locations using a PCR-generated synthetic probe. Annals Bot (in press)Google Scholar
  13. Danehower DA, Reed SM, Wernsman EA (1989) Identification of the chromosome carrying the gene for production of betamethylvaleryl sucrose esters in Nicotiana tabacum. Agric Biol Chem 53:2813–2815Google Scholar
  14. Dimitrov B, Popov P, Zagorska N (1982) Chromosome analysis of in vitro induced androgenetic haploids of Nicotiana tabacum. Cytologia 47:427–433Google Scholar
  15. Flavell RB, O'Dell M, Thompson WF, Vincentz M, Sardana R, Barker RF (1986) The differential expression of ribosomal RNA genes. Phil Trans R Soc Lond B 314:385–397Google Scholar
  16. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885Google Scholar
  17. Gerstel DU (1960) Segregation in new allopolyploids of Nicotiana. I. Comparison of 6 × (N. tabacum × tomentosiformis) and 6 x (N. tabacum x otophora). Genetics 45:1723–1734Google Scholar
  18. Gerstel DU (1963) Segregation in new allopolyploids of Nicotiana. II. Discordant ratios from individual loci in 6 x (N. tabacum x N. sylvestris). Genetics 48:677–689Google Scholar
  19. Gerstel DU (1980) Cytoplasmic male sterility in Nicotiana (A review). North Carolina Agricultural Research Service Technical Bulletin 263Google Scholar
  20. Gerstel DU, Burns JA (1984) Nucleolus organizing chromosomes of Red Russian tobacco. Tob Sci 28:25–27Google Scholar
  21. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham, MassachusettsGoogle Scholar
  22. Gray JC, Kung SD, Wildman SG (1974) Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature 252:226–227Google Scholar
  23. Herman L, Jacobs A, van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256Google Scholar
  24. Heslop-Harrison JS (1991) The molecular cytogenetics of plants. J Cell Sci 100:15–21Google Scholar
  25. Jamet E, Durr A, Fleck J (1987) Absence of some truncated genes in the amphidiploid Nicotiana tabacum. Gene 59:213–221Google Scholar
  26. Koukalova B, Reich J, Matyásek R, Kuhrova V, Bezdek M (1989) A BamHI family of highly repeated sequences of Nicotiana tabacum. Theor Appl Genet 78:77–80Google Scholar
  27. Kuhrová V, Bezdek M, Vyskot B, Koukalova B, Faijkus J (1991) Isolation and characterization of two middle repetitive DNA sequences of nuclear tobacco genome. Theor Appl Genet 81:740–744Google Scholar
  28. Ladin BF, Doyle JJ, Beachy RN (1984) Molecular characterization of a deletion mutation affecting the alpha'-subunit of β-con-glycin of soybean. J Mol Appl Genet 2:372–380Google Scholar
  29. Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled probes. Genome 34:329–333Google Scholar
  30. Matassi G, Melis R, Macaya G, Bernadi G (1991) Compositional bimodality of the nuclear genome of tobacco. Nucleic Acids Res 19:5561–5567Google Scholar
  31. Meinkoth J, Wahl G (1984) Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138:267–284Google Scholar
  32. Mouras A, Salesses G, Lutz A (1978) Sur l'utilisation des protoplasts in cytologic: Amelioration d'une methode recente in vue de l'identification des chromosomes mitotiques des genres Nicotiana et Prunus. Caryologia 31:117–127Google Scholar
  33. Narayan RKJ (1987) Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Syst Evol 157:161–180Google Scholar
  34. Okamuro JK, Goldberg RB (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198:290–298Google Scholar
  35. Olmstead R, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III. Taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, for the Linnean Society, London, pp 161–168Google Scholar
  36. Parokonny AS, Kenton AY, Meredith L, Owens SJ, Bennett MD (1992a) Genomic divergence of allopatric sibling species studied by molecular cytogenetics of their F1 hybrids. Plant J 2: 695–704Google Scholar
  37. Parokonny AS, Kenton AY, Gleba YY, Bennett MD (1992b) Genome reorganization in Nicotiana asymmetric somatic hybrids analyzed by in situ hybridization. Plant J 2:863–874Google Scholar
  38. Praznovszky T, Keresö J, Tubak V, Cserpán I, Fátyol K, Hadlaczky G (1991) De novo chromosome formation in rodent cells. Proc Natl Acad Sci USA 88:11042–11046Google Scholar
  39. Reed SM (1991) Cytogenetic evolution and aneuploidy in Nicotiana. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, The Netherlands, pp 483–505Google Scholar
  40. Reed SM, Burns JA (1986) Cross-restoration between Nicotiana cytoplasmic male sterile and restored lines. J Hered 77:159–163Google Scholar
  41. Reed SM, Burns JA (1987) The nucleolus organizer chromosomes of Nicotiana tabacum. J Hered 78:400–401Google Scholar
  42. Scherthan H, Köhler M, Vogt P, von Malsch K, Schweizer D (1992) Chromosomal in situ hybridization with double-labelled DNA: signal amplification at the probe level. Cytogenet Cell Genet 60:4–7Google Scholar
  43. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324Google Scholar
  44. Schwarzacher T, Anamthawat-Jónsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786Google Scholar
  45. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. In: Stahl A, Luciani JM, Vagner-Capodano AM (eds) Chromosomes today 9. Allen and Unwin, London, pp 61–74Google Scholar
  46. Schweizer D, Strehl S, Hagemann S (1991) Plant repetitive DNA elements and chromosome structure. In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes today 10. Unwin Hyman, London, pp 33–43Google Scholar
  47. Sheen SJ (1972) Isozymic evidence bearing on the origin of Nicotiana tabacum L. Evolution 26:143–154Google Scholar
  48. Smith HH (1979) The genus as a genetic resource. In: Durbin RD (ed) Nicotiana: Procedures for experimental use. USDA Tech Bull 1586:1–16Google Scholar
  49. Sperisen C, Ryals J, Meins F (1991) Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3-β-glucosidase gene family. Proc Natl Acad Sci USA 88:1820–1824Google Scholar
  50. Tanksley SD, Bernatzky R (1987) Molecular markers for the nuclear genome of tomato. In: Nevins DJ, Jones RA (eds) Plant biology 4, tomato biotechnology. Liss, New YorkGoogle Scholar
  51. Trask B, Pinkel D, Van den Engh G (1989) The proximity of DNA sequence in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5:710–719Google Scholar
  52. Uchiyama H, Chen K, Wildman SG (1977) Polypeptide composition of fraction I protein as an aid in the study of plant evolution. Stadler Symp 9:83–99Google Scholar
  53. Vaucheret H, Vincentz M, Kronenberger J, Caboche M, Rouzé P (1989) Molecular cloning and characterisation of the two homeologous genes coding for nitrate reductase in tobacco. Mol Gen Genet 216:10–15Google Scholar
  54. Wolf-Litman O, Soferman O, Tabib Y, Izhar S (1992) Interaction of the mitochondrial S-Pcf locus for cytoplasmic male sterility in Petunia with multiple fertility-restoration genes in somatic hybrid plants. Theor Appl Genet 84:829–834Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Ann Kenton
    • 1
  • Alex S. Parokonny
    • 1
    • 2
  • Yuri Y. Gleba
    • 1
  • Michael D. Bennett
    • 1
  1. 1.Jodrell Laboratory, Royal Botanic GardensKew, RichmondUK
  2. 2.Institute of Cell Biology and Genetic EngineeringUkrainian Academy of SciencesKievUkraine

Personalised recommendations