Journal of Mathematical Biology

, Volume 27, Issue 6, pp 609–631 | Cite as

Predator-prey populations with parasitic infection

  • K. P. Hadeler
  • H. I. Freedman


A predator-prey model, where both species are subjected to parasitism, is developed and analyzed. For the case where there is coexistence of the predator with the uninfected prey, an epidemic threshold theorem is proved. It is shown that in the case where the uninfected predator cannot survive only on uninfected prey, the parasitization could lead to persistence of the predator provided a certain threshold of transmission is surpassed.

Key words

Predator-prey Parasite-mediated persistence Epidemic threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. M., May, R. M.: The invasion, persistence, and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond., B 314, 533–570 (1986)Google Scholar
  2. Aron, J. L., May, R. M.: The population dynamics of malaria. In: Anderson, R. M. (ed.) The population dynamics of infectious diseases, theory and application, pp. 139–179. London: Chapman and Hall 1982Google Scholar
  3. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H. P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: Springer 1986Google Scholar
  4. Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)Google Scholar
  5. Curio, E.: Behavior and parasitism, chap. 2. In: Mehlhom, K. (ed.) Parasitology in focus, pp. 149–160. Berlin Heidelberg New York: Springer 1988Google Scholar
  6. Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. (Lect. Notes Biomath., vol. 11, pp. 1–14) Berlin Heidelberg New York: Springer 1976Google Scholar
  7. Dobson, A. P.: The population biology of parasite-induced changes in host behavior. Q. Rev. Biol. 63, 139–165 (1988)Google Scholar
  8. Freedman, H. I.: Graphical stability, enrichment, and pest control by a natural enemy. Math. Biosci. 31, 207–225 (1976)Google Scholar
  9. Freedman, H. I.: Deterministic mathematical models in population ecology. HFR Consulting Ltd.: Edmonton, 1987Google Scholar
  10. Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)Google Scholar
  11. Freedman, H. I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)Google Scholar
  12. Freedman, H. I., Wolkowicz, G. S. K.: Predator-prey systems with group defense: the paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986)Google Scholar
  13. Gantmacher, F. R.: The theory of matrices, Chap. 13. Chelsea 1959Google Scholar
  14. Hadeler, K. P., Dietz, K.: Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Comput. Math. Appl. 9, 415–430 (1983)Google Scholar
  15. Hadeler, K. P.: Spread and age structure in epidemic models. In: Perspectives in Mathematics, Anniversary of Oberwolfach. Basel: Birkhäuser 1984Google Scholar
  16. Hadeler, K. P., Dietz, K.: Population dynamics of killing parasites which reproduce in the host. J. Math. Biol. 21, 45–65 (1984)Google Scholar
  17. Hofbauer, J., Sigmund, K.: Permanence for replicator equations. In: Kurzhansky, A. B., Sigmund, K.: Dynamical systems. (Lect. Notes. Econ. Math. Syst., vol. 287) Berlin Heidelberg New York: Springer 1987Google Scholar
  18. Holling, C. S.: Some characteristics of simple types of predation and parasitism, Can. Ent. 91, 385–398 (1959)Google Scholar
  19. Holmes, J. C., Bethel, W. M.: Modification of intermediate host behaviour by parasites. In: Canning, E. V., Wright, C. A. (eds.) Behavioural aspects of parasite transmission. Suppl. I to Zool. f. Linnean Soc. 51, 123–149 (1972)Google Scholar
  20. Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond., A 115, 700–721 (1927)Google Scholar
  21. Kuang, Y., Freedman, H. I.: Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88, 67–84 (1988)Google Scholar
  22. Kretzschmar, M.: A renewal equation with birth-death process as a model for parasitic infections. J. Math. Biol. 27, 191–221 (1989)Google Scholar
  23. Liu, L. P., Cheng, K. S.: Global stability of a predator-prey system. J. Math. Biol. 26, 65–71 (1988)Google Scholar
  24. MacDonald, G.: The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49, 813–828 (1952)Google Scholar
  25. MacDonald, G.: The measurement of malaria transmission. Proc R. Soc. Medic. 48, 295–301 (1955)Google Scholar
  26. Bruce-Chwatt, L. J., Glanville, V. J. (eds.) Dynamics of tropical disease. Selected papers by G. Macdonald. Oxford: Oxford University Press 1973Google Scholar
  27. Mech, L. D., McRoberts, R. E., Peterson, R. O., Page, R. E.: Relationship of deer and moose populations to previous winter's snow. J. Anim. Ecol. 56, 615–627 (1987)Google Scholar
  28. Peterson, R. O., Page, R. E.: Wolf density as a predictor of predation rate. Swedish Wildlife Research Suppl. 1, 771–773 (1987)Google Scholar
  29. Peterson, R. O., Page R. E.: The rise and fall of isle Royale wolves, 1975–1986. J. Mamm. 69(I), 89–99 (1988)Google Scholar
  30. Rosenzweig, M. L.: Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)Google Scholar
  31. Waldstätter, R., Hadeler, K. P., Greiner G.: A Lotka-McKendrick model for a population structured by the level of parasitic infection. SIAM J. Math. Anal. 19, 1108–1118 (1988)Google Scholar
  32. Waltman, P.: Deterministic threshold models in the theory of epidemics. (Lect. Notes Biomath. vol. 1) Berlin Heidelberg New York: Springer 1974Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • K. P. Hadeler
    • 1
  • H. I. Freedman
    • 2
  1. 1.Lehrstuhl für BiomathematikUniversität TübingenTübingenFederal Republic of Germany
  2. 2.Applied Mathematics Institute, Department of MathematicsUniversity of AlbertaEdmontonCanada

Personalised recommendations