Advertisement

Archive for Rational Mechanics and Analysis

, Volume 29, Issue 4, pp 241–271 | Cite as

On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity

  • Constantine M. Dafermos
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Asymptotic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zener, C., Phys. Rev. 52, 230–235 (1937); 53, 90–99 (1938).Google Scholar
  2. 2.
    Päsler, M., Z. Physik 122, 357–386 (1944).Google Scholar
  3. 3.
    Alblas, J. B., Appl. Sci. Res. (A) 10, 349–362 (1961).Google Scholar
  4. 4.
    Chadwick, P., Mathematika 9, 38–48 (1962).Google Scholar
  5. 5.
    Ericksen, J. L., Internat. J. Solids and Structures 2, 573–580 (1966).Google Scholar
  6. 6.
    Ericksen, J. L., Proc. Fifth U.S. Nat. Congr. Appl. Mech. 187–193 (1966).Google Scholar
  7. 7.
    Lions, J. L., Équations Différentielles-Opérationnelles et problèmes aux limites. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  8. 8.
    Weiner, J. H., Quart. Appl. Math. 15, 102–105 (1957).Google Scholar
  9. 9.
    Ionescu-Cazimir, V., Bull. Acad. Polon. Sci. Sér. Sci. Tech. 12, 565–579 (1964).Google Scholar
  10. 10.
    Agmon, S., Lectures on Elliptic Boundary Value Problems. Princeton: Van Nostrand 1965.Google Scholar
  11. 11.
    Fichera, G., Lectures on Linear Elliptic Differential Systems and Eigenvalue Problems. Berlin-Göttingen-Heidelberg: Springer 1965.Google Scholar
  12. 12.
    Friedrichs, K. O., Ann. of Math. 48, 441–471 (1947).Google Scholar
  13. 13.
    Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Berlin-Göttingen-Heidelberg: Springer 1965.Google Scholar
  14. 14.
    Sobolev, S. L., Some Applications of Functional Analysis in Mathematical Physics. Leningrad 1950. English translation by F. Browder; Providence: A.M.S. 1963.Google Scholar
  15. 15.
    Višk, M. I., & O. A. Ladyženskaya, Uspehi Mat. Nauk (N.S.), 11, no. 6 (72), 41–97 (1956). English translation in A.M.S. translations, Ser 2, 10, 223–281 (1958).Google Scholar
  16. 16.
    Agmon, S., Douglis, A. & L. Nirenbero, Comm. Pure Appl. Math. 12, 623–727 (1959); 17, 35–92 (1964).Google Scholar
  17. 17.
    Morrey, C. B., Jr., Multiple Integrals in the Calculus of Variations. Berlin-Göttingen-Heidelberg: Springer 1966.Google Scholar
  18. 18.
    Shield, R. T., Z. Angew. Math. Phys. 16, 649–686 (1965).Google Scholar
  19. 19.
    Achenbach, J. D., Acta Mech. 3, 342–351 (1967).Google Scholar
  20. 20.
    Bochner, S., Proc. Nat. Acad. Sci. U.S.A. 46, 1233–1236 (1960).Google Scholar
  21. 21.
    Lions, J. L., & P. A. Raviart, ICC Bull. 5, 1–21 (1966).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Constantine M. Dafermos
    • 1
  1. 1.Department of MechanicsThe Johns Hopkins UniversityBaltimore

Personalised recommendations