Journal of Mathematical Biology

, Volume 23, Issue 1, pp 41–53

The selection mutation equation

  • Josef Hofbauer
Article

Abstract

Fisher's Fundamental Theorem of Natural Selection is extended to the selection mutation model with mutation rates ɛijii.e. depending only on the target gene, by constructing a simple Lyapunov function. For other mutation rates stable limit cycles are possible.

Key words

Fundamental theorem Maximum principle Shahshahani gradients Limit cycles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akin, E.: The geometry of population genetics. Lect. Notes Biomath. vol. 31. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  2. 2.
    Akin, E.: Hopf bifurcation in the two locus genetic model. Mem. Am. Math. Soc. 284 (1983)Google Scholar
  3. 3.
    Bürger, R.: On the evolution of dominance modifiers. J. Theor. Biol. 101, 285–298 (1983)Google Scholar
  4. 4.
    Crow, J. F., Kimura, M.: An introduction to population genetics theory. New York: Harper and Row 1970Google Scholar
  5. 5.
    Ewens, W. J.: Mathematical population genetics. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  6. 6.
    Hadeler, K. P.: Mathematik für Biologen. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  7. 7.
    Hadeler, K. P.: Stable polymorphisms in a selection model with mutation. SIAM J. Appl. Math. 41, 1–7 (1981)Google Scholar
  8. 8.
    Hofbauer, J.: Gradients versus cycling in genetic selection models. In: Aubin, J.-P., Saari, D., Sigmund, K. (eds.) Dynamics of Macrosystems. Lect. Notes Econ. Math. Syst., to appearGoogle Scholar
  9. 9.
    Hofbauer, J., Iooss, G.: A Hopf bifurcation theorem for difference equations approximating a differential equation. Monatsh. Math. 98, 99–113 (1984)Google Scholar
  10. 10.
    Hofbauer, J., Sigmund, K.: Evolutionstheorie und dynamische Systeme. Mathematische Aspekte der Selektion. Berlin-Hamburg: Parey 1984Google Scholar
  11. 11.
    Kingman, J. F. C.: Mathematics of Genetic Diversity. CBMS-NSF Regional Conference Series in Applied Mathematics 34. Philadelphia: SIAM 1980Google Scholar
  12. 12.
    Losert, V., Akin, E.: Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17, 241–251 (1983)Google Scholar
  13. 13.
    Negrini, P., Salvadori, L.: Attractivity and Hopf bifurcation. Nonlinear Anal. 3, 87–99 (1979)Google Scholar
  14. 14.
    Roughgarden, J.: Theory of population genetics and evolutionary ecology: an introduction. New York: Macmillan 1979Google Scholar
  15. 15.
    Schuster, P., Sigmund, K., Wolff, R., Hofbauer, J.: Dynamical systems under constant organization. Part 2: Homogeneous growth functions of degree 2. SIAM J. Appl. Math. 38, 282–304 (1980)Google Scholar
  16. 16.
    Shahshahani, S.: A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc. 211 (1979).Google Scholar
  17. 17.
    Sigmund, K.: The maximum principle for replicator equations. In: Peschel, M. (ed.) Lotka-Volterra approach to dynamical systems. Proc. Conf. Wartburg (GDR) March 1984. Berlin: Akademie-Verlag 1985Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Josef Hofbauer
    • 1
  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations