Archives of Microbiology

, Volume 154, Issue 4, pp 336–341 | Cite as

Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen

  • J. Dolfing
  • J. Zeyer
  • P. Binder-Eicher
  • R. P. Schwarzenbach
Original Papers

Abstract

A bacterium tentatively identified as a Pseudomonas sp. was isolated from a laboratory aquifer column in which toluene was degraded under denitrifying conditions. The organism mineralized toluene in pure culture in the absence of molecular oxygen. In carbon balance studies using [ring-UL-14C]toluene, more than 50% of the radioactivity was recovered as 14CO2. Nitrate and nitrous oxide served as electron acceptors for toluene mineralization. The organism was also able to degrade m-xylene, benzoate, benzaldehyde, p-cresol, p-hydroxybenzaldehyde, p-hydroxybenzoate and cyclohexanecarboxylic acid in the absence of molecular oxygen.

Key words

Pseudomonas sp. Toluene Xylene Dimethylbenzene Aromatic compounds Denitrification Nitrate reduction Anaerobic degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry DF, Francis AJ, Bollag J-M (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59PubMedPubMedCentralGoogle Scholar
  2. Bossert ID, Young LY (1986) Anaerobic oxidation of p-cresol by a denitrifying bacterium. Appl Environ Microbiol 52:1117–1122PubMedPubMedCentralGoogle Scholar
  3. Braun K, Gibson DT (1984) Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol 48:102–107PubMedPubMedCentralGoogle Scholar
  4. Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317CrossRefPubMedGoogle Scholar
  5. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252Google Scholar
  6. Grbić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260PubMedPubMedCentralGoogle Scholar
  7. Hanert HH (1981) The genus Gallionella. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 509–515CrossRefGoogle Scholar
  8. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3 B. Academic Press, New York, pp 117–132Google Scholar
  9. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70PubMedPubMedCentralGoogle Scholar
  10. Körner H, Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55:1670–1676PubMedPubMedCentralGoogle Scholar
  11. Kuhn EP, Colberg PJ, Schnoor JL, Wanner O, Zehnder AJB, Schwarzenbach RP (1985) Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies. Environ Sci Technol 19:961–968CrossRefGoogle Scholar
  12. Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54:490–496PubMedPubMedCentralGoogle Scholar
  13. Legler C (1971) Ausgewählte Methoden der Wasseruntersuchung, Band I: Chemische, physikalisch-chemische, physikalische und elektrochemische Methoden. Gustav Fischer, JenaGoogle Scholar
  14. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300CrossRefGoogle Scholar
  15. Montgomery HAC, Dymock JF (1961) The determination of nitrite in water. Analyst 86:414–416Google Scholar
  16. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiacea and Chlorobiacea. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 279–289CrossRefGoogle Scholar
  17. Sørensen J, Tiedje JM, Firestone RB (1980) Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl Environ Microbiol 39:105–108PubMedPubMedCentralGoogle Scholar
  18. Taylor BF, Campbell WL, Chinoy I (1970) Anaerobic degradation of the benzene nucleus by a facultatively anaerobic microorganism. J Bacteriol 102:430–437PubMedPubMedCentralGoogle Scholar
  19. Tewari YB, Miller MM, Wasik SP, Martire DE (1982) Aqueous solubility and octanol/water partition coefficient of organic compounds at 25° C. J Chem Eng Data 27:451–454CrossRefGoogle Scholar
  20. Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217CrossRefPubMedGoogle Scholar
  21. Vogel TM, Grbić-Galić D (1986) Incorporation of oxygen from water into toluene and benzene during anacrobic fermentative transformation. Appl Environ Microbiol 52:200–202PubMedPubMedCentralGoogle Scholar
  22. Weast RC, Astle MJ (1981) Handbook of chemistry and physics. CRC Press, Boca Raton, FLGoogle Scholar
  23. Wilson BH, Smith GB, Rees JF (1986) Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ Sci Technol 20:997–1002CrossRefPubMedGoogle Scholar
  24. Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 487–523Google Scholar
  25. Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York, pp 1–38Google Scholar
  26. Zehnder AJB, Svensson BH (1986) Life without oxygen: what can and what cannot? Experientia 42:1197–1205CrossRefPubMedGoogle Scholar
  27. Zeyer J, Kearney PC (1982) Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pestic Biochem Physiol 17:215–223CrossRefGoogle Scholar
  28. Zeyer J, Kuhn EP, Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl Environ Microbiol 52:944–947PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Dolfing
    • 1
  • J. Zeyer
    • 1
  • P. Binder-Eicher
    • 1
  • R. P. Schwarzenbach
    • 1
  1. 1.Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG/ETH)KastanienbaumSwitzerland

Personalised recommendations