Journal of Mathematical Biology

, Volume 25, Issue 3, pp 327–347 | Cite as

Human sleep and circadian rhythms: a simple model based on two coupled oscillators

  • Steven H. Strogatz
Article

Abstract

We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.

Key words

Sleep Circadian Human Model Oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschoff, J.: Circadian rhythms in man. Science 148, 1427–1432 (1965)Google Scholar
  2. 2.
    Beersma, D. G. M., Daan, S., Dijk, D. J.: Sleep intensity and timing: A model for their circadian control. Lect. Math. Life Sci. 19, 39–62. Providence: American Mathematical Society (1987)Google Scholar
  3. 3.
    Borbély, A. A.: A two process model of sleep regulation. Human Neurobiol. 1, 195–204 (1982)Google Scholar
  4. 4.
    Broughton, R.: Biorhythmic variations in consciousness and psychological functions. Can. Psychol. Rev. 16, 217–239 (1975)Google Scholar
  5. 5.
    Carpenter, G. A., Grossberg, S.: A neural theory of circadian rhythms: The gated pacemaker. Biol. Cybern. 48, 35–59 (1983)Google Scholar
  6. 6.
    Carpenter, G. A., Grossberg, S.: A neural theory of circadian rhythms: Aschoff's rule in diurnal and nocturnal mammals. Am. J. Physiol. 247, R1067-R1082 (1984)Google Scholar
  7. 7.
    Cohen, A. H., Holmes, P. J., Rand, R. H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model. J. Math. Biol. 13, 345–369 (1982)Google Scholar
  8. 8.
    Czeisler, C. A.: Human circadian physiology: Internal organization of temperature, sleep-wake and neuroendocrine rhythms monitored in an environment free of time-cues. Ph.D. thesis, Stanford University, Stanford, CA (1978)Google Scholar
  9. 9.
    Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., Zimmerman, J. C., Knauer, R. S.: Human sleep: Its duration and organization depend on its circadian phase. Science 210, 1264–1267 (1980)Google Scholar
  10. 10.
    Czeisler, C. A., Allan, J. S., Strogatz, S. H., Ronda, J. M., Sánchez, R., Ríos, C. D., Freitag, W. O., Richardson, G. S., Kronauer, R. E.: Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 233, 667–671 (1986)Google Scholar
  11. 11.
    Daan, S., Beersma, D.: Circadian gating of human sleep-wake cycles. In: Moore-Ede, M. C., Czeisler, C. A. (eds.) Mathematical models of the circadian sleep-wake cycle, pp. 129–158. New York: Raven Press 1984Google Scholar
  12. 12.
    Daan, S., Beersma, D. G. M., Borbély, A. A.: Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161-R178 (1984)Google Scholar
  13. 13.
    Daan, S., Berde, C.: Two coupled oscillators: Simulations of the circadian pacemaker in mammalian activity rhythms. J. Theor. Biol. 70, 297–313 (1978)Google Scholar
  14. 14.
    Enright, J. T.: The timing of sleep and wakefulness. Studies in Brain Function 3. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  15. 15.
    Enright, J. T.: Sleep duration for human subjects during internal desynchronization. In: Moore-Ede, M. C., Czeisler, C. A. (eds.) Mathematical models of the circadian sleep-wake cycle, pp. 201–205. New York: Raven Press 1984Google Scholar
  16. 16.
    Ermentrout, G. B., Kopell, N.: Frequency plateaus in a chain of weakly coupled oscillators, I. SIAM J. Math. Anal. 15, 215–237 (1984)Google Scholar
  17. 17.
    Ermentrout, G. B., Rinzel, J.: Beyond a pacemaker's entrainment limit: Phase walk-through. Am. J. Physiol. 246, R102-R106 (1984)Google Scholar
  18. 18.
    Gander, P. H., Kronauer, R. E., Czeisler, C. A., Moore-Ede, M. C.: Simulating the action of zeitgebers on a coupled two-oscillator model of the human circadian system. Am. J. Physiol. 247, R418-R426 (1984)Google Scholar
  19. 19.
    Gander, P. H., Kronauer, R. E., Czeisler, C. A., Moore-Ede, M. C. Modeling the action of zeitgebers on the human circadian system:. Comparisons of simulations and data. Am. J. Physiol. 247, R427-R444 (1984)Google Scholar
  20. 20.
    Gander, P. H., Kronauer, R. E., Graeber, R. C.: Phase shifting two coupled circadian pacemakers: Implications for jet lag. Am. J. Physiol. 249, R704-R719 (1985)Google Scholar
  21. 21.
    Hoppensteadt, F. C., Keener, J. P.: Phase locking of biological clocks. J. Math. Biol. 15, 339–349 (1982)Google Scholar
  22. 22.
    Kawato, M., Fujita, K., Suzuki, R., Winfree, A. T.: A three-oscillator model of the human circadian system controlling the core temperature rhythm and the sleep-wake cycle. J. Theor. Biol. 98, 369–392 (1982)Google Scholar
  23. 23.
    Kopell, N., Ermentrout, G. B.: Symmetry and phaselocking in chains of weakly coupled oscillators. Comm. on Pure and Appl. Math. 39, 623–660 (1986)Google Scholar
  24. 24.
    Kronauer, R. E.: Reply to R. A. Wever. Am. J. Physiol. 242, R22-R24 (1982)Google Scholar
  25. 25.
    Kronauer, R. E.: Temporal subdivision of the circadian cycle. Lect. Math. Life Sci. 19, 63–120. Providence: American Mathematical Society 1987Google Scholar
  26. 26.
    Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C., Weitzman, E. D.: Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 242, R3-R17 (1982)Google Scholar
  27. 27.
    Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C., Weitzman, E. D.: Mathematical representation of the human circadian system: Two interacting oscillators which affect sleep. In: Chase, M. H., Weitzman, E. D. (eds.) Sleep disorders: basic and clinical research, pp. 173–194. New York: Spectrum 1983Google Scholar
  28. 28.
    Kronauer, R. E., Gander, P. H.: Commentary on the article of Daan et al. Am. J. Physiol. 246, R178-R182 (1984)Google Scholar
  29. 29.
    McCarley, R. W., Massaquoi, S. G.: A limit cycle mathematical model of the REM sleep oscillator system. Am. J. Physiol. 251, R1011-R1029 (1986)Google Scholar
  30. 30.
    Moore-Ede, M. C., Czeisler, C. A., Richardson, G. S.: Circadian timekeeping in health and disease 2. Clinical implications of circadian rhythmicity. New England J. Med. 309, 530–536 (1983)Google Scholar
  31. 31.
    Moore-Ede, M. C., Czeisler, C. A. (eds.): Mathematical models of the circadian sleep-wake cycle. New York: Raven Press 1984Google Scholar
  32. 32.
    Siffre, M.: Beyond time (ed. and transl. H. Briffault) New York: McGraw-Hill 1964Google Scholar
  33. 33.
    Siffre, M.: Six months alone in a cave. National Geographic 147(3), 426–435 (1975)Google Scholar
  34. 34.
    Strogatz, S. H.: The mathematical structure of the human sleep-wake cycle. Lect. Notes Biomath. 69. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  35. 35.
    Strogatz, S. H.: A comparative analysis of models of the human sleep-wake cycle. Lect. Math. Life Sci. 19, 1–38. Providence: American Mathematical Society 1987Google Scholar
  36. 36.
    Strogatz, S. H., Kronauer, R. E., Czeisler, C. A.: Circadian regulation dominates homeostatic control of sleep length and prior wake length in humans. Sleep 9, 353–364 (1986)Google Scholar
  37. 37.
    Webb, W. B.: Sleep and naps. Spec. Sci. Tech. 1, 313–318 (1978)Google Scholar
  38. 38.
    Wever, R.: The circadian system of man. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  39. 39.
    Wever, R.: Commentary on the mathematical model of the human circadian system by Kronauer et al. Am. J. Physiol. 242, R17-R21 (1982)Google Scholar
  40. 40.
    Wever, R. A.: Toward a mathematical model of circadian rhythmicity. In: Moore-Ede, M. C., Czeisler, C. A. (eds.) Mathematical models of the circadian sleep-wake cycle, pp. 17–79. New York: Raven Press 1984Google Scholar
  41. 41.
    Winfree, A. T.: Human body clocks and the timing of sleep. Nature 297, 23–27 (1982)Google Scholar
  42. 42.
    Winfree, A. T.: The tides of human consciousness: Descriptions and questions. Am. J. Physiol. 242, R163-R166 (1982)Google Scholar
  43. 43.
    Winfree, A. T.: Impact of a circadian clock on the timing of human sleep. Am. J. Physiol. 245, R497-R504 (1983)Google Scholar
  44. 44.
    Zulley, J., Wever, R., Aschoff, J.: The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflügers Arch. 391, 314–318 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Steven H. Strogatz
    • 1
    • 2
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsBoston UniversityBostonUSA

Personalised recommendations