Advertisement

Theoretical and Applied Genetics

, Volume 65, Issue 1, pp 77–84 | Cite as

Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genus Coffea L.

  • F. Berthou
  • C. Mathieu
  • F. Vedel
Article

Summary

Chloroplast and mitochondrial DNA from nine species or taxons of coffee-trees were compared as to their phylogenetic relationship by restriction endonuclease fragment analysis. Three types of chloroplast DNA (cp DNA) were detected indicating relationships as follows: (i) C. arabica, C. eugenioides; (ii) C. canephora, C. congensis, “nana” taxon; (iii) C. liberica. The mitochondrial DNA (mt DNA) separated into five types: (i) C. arabica, C. eugenioides, C. congensis; (ii) C. canephora, “nana” taxon; (iii) C. excelsa; (iv) C. liberica; (v) Paracoffea ebracteolata. The divergence in organelle DNAs agrees with the phylogenetic relationship deduced by conventional methods and is presented in some detail. Restriction patterns of the cp and mt DNAs isolated from a clone of C. arabusta have been compared to those of the parents and were found to be inherited from the mother. Cp and mt DNA analyses in the genus Coffea support the hypothesis that C. canephora diverged from C. congensis, whereafter the latter species differentiated into C. eugenioides and C. arabica

Key words

Coffea Coffee-tree evolution Chloroplast DNA Mitochondrial DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthaud J, Guillaumet JL (1978) Les caféiers sauvages en Centrafrique. Résultats d'une mission de prospection (Janvier-Février 1975). Cafe Cacao The 22:171–186Google Scholar
  2. Berthaud J, Guillaumet JL, Le Pierres D, Lourd M (1980) Les caféiers sauvages du Kenya: prospection et mise en culture. Cafe Cacao The 24:101–112Google Scholar
  3. Berthou F, Trouslot P (1977) L'analyse du polymorphisme enzymatique dans le genre Coffea: adaptation d'une méthode d'electrophorèse en série; premiers résultats. 8ème Colloque Scientifique International sur le café, Abidjan, ASIC, Paris 1979, pp 373–384Google Scholar
  4. Berthou F, Trouslot P, Hamon S, Vedel F, Quetier F (1980) Analyse en électrophorèse du polymorphisme biochimique des caféiers: variation enzymatique dans dix-huit populations sauvages; variation de l'ADN mitochondrial dans les espèces C. canephora, C. eugenioïdes et C. arabica. Cafe Cacao The 24:313–326Google Scholar
  5. Carvalho A (1952) Taxonomia de Coffea arabica L. 6. Caracteres morfologicos dos haploides. Bragantia 12:201–212Google Scholar
  6. Charrier A (1978) La structure génétique des caféiers spontanés de la région malgache Mascarocoffea. Leurs relations avec les caféiers d'origine africaine (Eucoffea). Mem ORSTOM 87:223Google Scholar
  7. Chevalier A (1938) Essai d'un groupement systématique des caféiers sauvages de Madagascar et des Iles Mascareignes. Rev Bot Appl Agric Trop 18:825–843Google Scholar
  8. Chevalier A (1942) Les caféiers du globe. 2. Iconographie des caféiers sauvages et cultivés et des Rubiacées prises pour des caféiers. Encycl Biol P. Lechevalier, ParisGoogle Scholar
  9. Chevalier A (1947) Les caféiers du globe. Systématique des caféiers et des faux-caféiers, Encycl Biol 28. P. Lechevalier, Paris, pp 82–263Google Scholar
  10. Guillaumet JL, Halle F (1967) Etude de la variabilité du Coffea arabica dans son aire d'origine. Rapport ORSTOMGoogle Scholar
  11. Greene PJ, Heynecker HL, Bolivar F, Rodriguez RL, Betlach MC, Covarrubias AA, Backman K, Russel DJ, Tait R, Boyer HW (1978) A general method for the purification of restriclion enzymes. Nucleic Acids Res 5:2373–2380Google Scholar
  12. Gordon KHJ, Grouse EJ, Bohnert HJ, Herrmann RG (1982) Mapping of differences in chloroplast DNA of five wildtype plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61:373–384Google Scholar
  13. Haarer AE (1957) Economic species varieties and forms of coffee. World Crops 9:371–373Google Scholar
  14. Herrmann RG, Bohnert HJ, Kowallik KV, Schmitt JM (1975) Size, conformation and purity of chloroplast DNA from some higher plants. Biochim Biophys Acta 378:305–317Google Scholar
  15. Hutchinson J, Dalziel JM (1963) Flora of West Tropical Africa (2nd edn by Heppen FN) 2:152–157Google Scholar
  16. Kung SD, Zhu YS, Shen GF (1982) Nicotiana chloroplast genome. 3. Chloroplast DNA evolution. Theor Appl Genet 61:73–79Google Scholar
  17. Lebacq P, Vedel F (1981) Sal I restriction enzyme analysis of chloroplast and mitochondrial DNAs in the genus Brassica. Plant Sci Lett 23:1–9Google Scholar
  18. Lebrun J (1941) Recherches morphologiques et systématiques sur les caféiers du Congo. Publ Inst Natl Etude Agron Congo, Ser TechGoogle Scholar
  19. Metzlaff M, Börner T, Hagemann R (1981) Variations of Chloroplast DNAs in the Genus Pelargonium and their Biparental inheritance. Theor Appl Genet 60:37–41Google Scholar
  20. Quetier F, Vedel F (1977) Heterogeneous population of mitochondrial DNA molecules in higher plants. Nature 268:365–368Google Scholar
  21. Rhodes PR, Zhu YS, Kung SD (1981) Nicotiana chloroplast genome. 1. Chloroplast DNA diversity. Mol Gen Genet 182:106–111Google Scholar
  22. Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCL J Mol Biol 4:430–443Google Scholar
  23. Timothy DH, Levings CS, Pring DR, Conde MF, Kermicle JL (1979) Organelle DNA variation and systematic relationships in the genus Zea: Teosinte. Proc Natl Acad Sci USA 76:4220–4224Google Scholar
  24. Vedel F, Quétier F, Bayen M (1976) Specific cleavage of chloroplast DNA from higher plants by Eco RI restriction nuclease. Nature 263:440–442Google Scholar
  25. Vedel F, Quétier F, Dosba F, Doussinault G (1978) Study of wheat phylogeny by Eco RI analysis of chloroplastic and mitochondrial DNAs. Plant Sci Lett 13:97–102Google Scholar
  26. Vedel F, Lebacq P, Quétier F (1980) Cytoplasmic DNA variation and relationships in cereal genomes. Theor Appl Genet 58:219–224Google Scholar
  27. Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitacea). Cell 25:793–803Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • F. Berthou
    • 1
  • C. Mathieu
    • 2
  • F. Vedel
    • 2
  1. 1.Biologie et Amélioration des Plantes UtilesORSTOMBondyFrance
  2. 2.Laboratoire de Photosynthèse, Biologie Cellulaire VégétaleGif-sur-YvetteFrance

Personalised recommendations