Advertisement

Journal of Mathematical Biology

, Volume 21, Issue 3, pp 383–388 | Cite as

Cell spreading and motility: A model lamellipod

  • George F. Oster
  • Alan S. Perelson
Research Announcement

Abstract

Cells moving in vitro do so by means of a motile appendage, the lamellipod. This is a broad, flat sheet of cytogel which spreads in front of the cell and pulls the cell forward. We present here a mathematical model for lamellipodial motion based on the physical chemistry of actomyosin gels.

Key words

Cell motility mechanochemistry cytogel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, M., Keller, R.: Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81, 161–164 (1984)Google Scholar
  2. De Gennes, P.: Dynamics of entangled polymer solutions I. The Rouse Model. Macromolecules 9, 587–593 (1976)Google Scholar
  3. Dembo, M., Harlow, F. J., Alt, W.: The biophysics of cell surface motility. In: Cell Surface Dynamics: Concepts and Models, A. Perelson, C. DeLisi, F. Wiegel, (eds.). New York: Marcel Dekker 1984Google Scholar
  4. Flory, P.: Principles of Polymer Chemistry. Itheca, Cornell University Press, 1953.Google Scholar
  5. Johnson, D.: Elastodynamics of gels. J. Chem. Phys. 77, 1531–1539 (1982)Google Scholar
  6. Korn, E.: Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev. 62, 672–737 (1982)Google Scholar
  7. Lauffenburger, D.: Influence of external concentration fluctuations on leukocyte chemotactic orientation. Cell Biophys. 4, 177–209 (1983)Google Scholar
  8. Odell, G., Oster, G., Burnside, B., Alberch, P.: The mechanical basis of morphogenesis I: Epithelial folding and invagination. Devel. Biol. 85, 446–462 (1981)Google Scholar
  9. Oster, G., Odell, G.: A mechanochemical model for plasmodial oscillations in Physarum. In: Proc. Workshop on Pattern Formation. W. Jager (ed.). Berlin, Heidelberg, New York: 1984Google Scholar
  10. Oster, G., Odell, G., Alberch, P.: Morphogenesis mechanics and evolution. In: Mathematical Problems in the Life Sciences. Vol. 13. Providence: Amer. Math. Soc., 1980Google Scholar
  11. Schmid-Schönbein, G., Skalak, R.: A continuum mechanical model of leukocytes during protopod formation. J. Biomech. Engrg. 106, 10–18 (1984)Google Scholar
  12. Snyderman, R., Goetz, E.: Molecular and cellular mechanisms of leukocyte chemotaxis. Science 213, 83037 (1981)Google Scholar
  13. Trinkaus, J.: Cells into Organs: Forces that Shape the Embryo. (2nd Ed.). Englewood Cliffs, NJ: Prentice Hall, 1984Google Scholar
  14. Zigmond, S.: Ability of polymorphonucluear leukocytes to orient in gradients of J. Cell Biol. 75, 606–616 (1977)Google Scholar
  15. Zigmond, S.: Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77, 269–287 (1978)Google Scholar
  16. Zigmond, S., Sullivan, S., Lauffenburger, D.: Kinetic analysis of chemotactic peptide receptor modulation. J. Cell Biol. 92, 34–43 (1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • George F. Oster
    • 1
  • Alan S. Perelson
    • 2
  1. 1.Department of BiophysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations