Journal of Mathematical Biology

, Volume 26, Issue 6, pp 661–688 | Cite as

Global stability results for a generalized Lotka-Volterra system with distributed delays

Applications to predator-prey and to epidemic systems
  • E. Beretta
  • V. Capasso
  • F. Rinaldi


The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.

Key words

Epidemic systems Lotka-Volterra systems Distributed time delays Equilibrium states Global stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D., Watson, R.: On the spread of a disease with gamma distributed latent and infectious periods. Biometrika, 67, 191–198 (1980)Google Scholar
  2. Bailey, N. T. J.: Some stochastic models for small epidemics in large populations. Appl. Statist. 13, 9–19 (1964)Google Scholar
  3. Bailey, N. T. J.: The mathematical theory of infectious diseases. London: Griffin 1975Google Scholar
  4. Barnett, S., Storey, C.: Matrix methods in stability theory. London: Nelson 1970Google Scholar
  5. Beretta, E., Capasso, V.: On the general structure of epidemic systems. Global asymptotic stability. Comp. Math. Appl. 12A, 677–694 (1986)Google Scholar
  6. Beretta, E., Solimano, F.: A generalization of integrodifferential Volterra models in population dynamics: boundedness and global asymptotic stability. Siam J. Appl. Math., in press (1988)Google Scholar
  7. Berman, A., Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. New York San Francisco London: Academic Press 1979Google Scholar
  8. Cooke, K. L.: Stability analysis for a vector disease model. Rocky Mount. J. Math., 9, 31–42 (1979)Google Scholar
  9. Cross, G. W.: Three types of matrices stability. Linear Algebra Appl. 20, 253–263 (1978)Google Scholar
  10. Cushing, J. M.: Integrodifferential equations and delay models in population dynamics. (Lect. Notes Biomath., vol. 20) Berlin Heidelberg New ork: Springer 1977Google Scholar
  11. D'Ancona, V.: The struggle for existence. Leiden: Brill 1954Google Scholar
  12. Di Liddo, A.: An SIR vector disease model with delay. Math. Modell. 7, 793–802 (1986)Google Scholar
  13. Garcia, C. B., Zangwill, W. I.: Pathways to solutions, fixed points and equilibria. Englewood Cliffs: Prentice-Hall, 1981Google Scholar
  14. Goh, B. S.: Sector stability of a complex ecosystem model. Math. Biosci. 40, 157–166 (1978)Google Scholar
  15. Harrison, G. W.: Global stability of predator-prey interactions. J. Math. Biol. 8, 159–171 (1979)Google Scholar
  16. Hethcote, H. W.: Qualitative analyses of communicable diseases models. Math. Biosci. 28, 335–356 (1976)Google Scholar
  17. Krikorian, N.: The Volterra model for three species predator-prey systems: boundedness and stability. J. Math. Biol. 7, 117–132 (1978)Google Scholar
  18. McDonald, N.: Time lags in biological models. (Lect. Notes Biomath., vol. 27) Berlin Heidelberg New York: Springer 1978Google Scholar
  19. Medley, G. F., Anderson, R. M., Cox, D. R., Billard, L.: Incubation period of AIDS in patients infected via blood transfusion. Nature 328, 719–721 (1987)Google Scholar
  20. Solimano, F., Beretta, E.: Existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay. J. Math. Biol. 18, 93–102 (1983)Google Scholar
  21. Vogel, T.: Dynamique théorique et heredité. Rend. Sem. Math. Univ. Politec. Torino 21, 87–98 (1961)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. Beretta
    • 1
  • V. Capasso
    • 2
  • F. Rinaldi
    • 3
  1. 1.Istituto di BiomatematicaUniversità di UrbinoUrbinoItaly
  2. 2.Dipartimento di MatematicaUniversità di BariBariItaly
  3. 3.Istituto per Ricerche di Matematica Applicata C.N.R.BariItaly

Personalised recommendations