Advertisement

Journal of Mathematical Biology

, Volume 26, Issue 5, pp 487–517 | Cite as

Pacemakers in aggregation fields of Dictyostelium discoideum: does a single cell suffice?

  • G. DeYoung
  • P. B. Monk
  • H. G. Othmer
Article

Abstract

In this paper we address the following question: can a single cell of the cellular slime mold Dictyostelium discoideum serve as a pacemaker for the aggregation phase? Whether or not this is possible is determined by the relative importance of cyclic AMP production due to self-stimulation as compared to diffusion of cyclic AMP away from the cell and extracellular degradation. We determine the conditions under which a single cell on an infinite place can emit periodic signals of cyclic AMP using a model developed previously for signal relay and adaptation in Dictyostelium. Elsewhere it has been shown that this model provides an accurate representation of the stimulus-response behavior of Dictyostelium for a variety of experimental conditions.

Key words

Single cell pacemaker Diffusion Self-stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcantara, F., Monk, M.: Signal propagation during aggregation in the slime mold Dictyostelium discoidem. J. Gen. Microbiol. 85, 321–334 (1974)Google Scholar
  2. 2.
    Cohen, M. H., Drage, D. J., Robertson, A.: Intophoresis of cyclic AMP. Biophys. J. 15, 753–763 (1975)Google Scholar
  3. 3.
    Devreotes, P. N., Derstine, P. L., Steck, T. L.: Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum I. A technique to monitor responses to controlled stimuli. J. Cell Biol. 80, 291–299 (1979)Google Scholar
  4. 4.
    Devreotes, P. N., Steck, T. L.: Cyclic 3′,5′ AMP relay in Dictyostelium discoideum II. Requirements for the initiation and termination of the response. J. Cell Biol. 80, 300–309 (1979)Google Scholar
  5. 5.
    Dinauer, M. C., MacKay, S. A., Devreotes, P. N.: Cyclic 3′,5′ AMP relay in Dictyostelium discoideum III. The relationship of cAMP synthesis and secretion during the cAMP signaling response. J. Cell. Biol. 86, 537–544 (1980)Google Scholar
  6. 6.
    Dinauer, M. C., Steck, T. L., Devreotes, P. N.: Cyclic 3′5′ AMP relay in Dictyostelium discoideum IV. Recovery of the cAMP signaling response after adaptation to cAMP. J. Cell. Biol. 86, 545–553 (1980)Google Scholar
  7. 7.
    Dinauer, M. C., Steck, T. L., Devreotes, P. N.: Cyclic 3′5′ AMP relay in Dictyostelium discoideum V. Adaptation of the cAMP signaling response during cAMP stimulation. J. Cell. Biol. 86, 554–561 (1980)Google Scholar
  8. 8.
    Doedel, E.: AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical Report, California Institute of Technology (1986)Google Scholar
  9. 9.
    Pate Elwood, E. F., Othmer, D. and H. G.: mPDE dramatically affects cAMP levels near aggregating D. dictyostelium cells. Preprint (1985)Google Scholar
  10. 10.
    Gerisch, G., Wick, U.: Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Commun. 65, 364–370 (1975)Google Scholar
  11. 11.
    Gingle, A. R.: Critical density for relaying in Dictyostelium discoideum and its relation to phosphodiesterase secretion into the extracellular medium. J. Cell Sci. 20, 1–20 (1976)Google Scholar
  12. 12.
    Monk, P. B., Othmer, H. G.: Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Phil. Trans. Roy. Soc. (Lond.), to appearGoogle Scholar
  13. 13.
    Nanjundiah, V., Malchow, D.: A theoretical study of the effects of cyclic AMP phosphodiesterases during aggregation in Dictyostelium. J. Cell. Sci. 22, 49–58 (1976)Google Scholar
  14. 14.
    Othmer, H. G., Monk, P. B.: Concentration waves in aggregation fields of a cellular slime mold. In: Ricciardi, L. (ed.) Biomathematics and related computational problems. Dordrecht: Reidel, to appearGoogle Scholar
  15. 15.
    Othmer, H.G., Monk, P.B., Rapp, P.E.: A model for signal relay and adaptation in Dictyostelium discoideum. Part II. Analytical and numerical results. Math. Biosci. 77, 77–139 (1985)Google Scholar
  16. 16.
    Raman, R. K., Hashimoto, Y., Cohen, M. H., Robertson, A.: Differentiation for aggregation in the cellular slime molds: The emergence of autonomously signalling cells in Dictyostelium discoideum. J. Cell. Sci. 21, 243–259 (1976)Google Scholar
  17. 17.
    Rapp, P. E., Monk, P. B., Othmer, H. G.: A model for signal relay and adaptation in Dictyostelium discoideum. Part I. Biological processes and the model network. Math. Biosci. 77, 35–78 (1985)Google Scholar
  18. 18.
    Robertson, A., Drage, D. J.: Stimulation of late interphase Dictyostelium discoideum amoebae with an external cyclic AMP pulse. Biophys. J. 15, 765–775 (1975)Google Scholar
  19. 19.
    Tomchik, K. J., Devreotes, P. N.: Adenosine 3′-5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212, 443–446 (1981)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. DeYoung
    • 1
  • P. B. Monk
    • 2
  • H. G. Othmer
    • 3
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Mathematical Sciences, Ewing HallUniversity of DelawareNewarkUSA
  3. 3.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations