Theoretical and Applied Genetics

, Volume 57, Issue 1, pp 5–9 | Cite as

The significance of genic balance to endosperm development in interspecific crosses

  • S. A. Johnston
  • T. P. M. den Nijs
  • S. J. Peloquin
  • R. E. HannemanJr.
Article

Summary

The endosperm has played a significant role in the evolution of angiosperms because of its physiological and genetic relationships to the embryo. One manifestation of this evolutionary role is its abnormal development in interploidy crosses. It is now established that the endosperm develops abnormally in interploidy-intraspecific crosses when the maternal: paternal genome ratio deviates from 2∶1 in the endosperm itself. We propose an Endosperm Balance Number (EBN) hypothesis to explain endosperm development in both interploidy-intraspecific and interspecific crosses. Each species is assigned an EBN on the basis of its crossing behavior to a standard species. It is the EBN which determines the effective ploidy in the endosperm of each species, and it is the EBNs which must be in a 2∶1, maternal:paternal ratio. The EBN of a species may be determined by a few genes rather than the whole genome. This hypothesis brings most intraspecific-interploidy and interspecific crossing data under a single concept with respect to endosperm function. The implications of this hypothesis to isolating mechanisms, 2n gametes, the evolution of disomic polyploids, and reciprocal differences in seed development are discussed.

Key words

Endosperm Evolution Interspecific crosses Solanums 2n gametes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Avery, A.G.; Satina, S.; Rietsema, J. (1959): Blakeslee: The Genus Datura. New York: Ronald PressGoogle Scholar
  2. Beck, C.B. (1976): Origin and early evolution of angiosperms. New York: Columbia University PressGoogle Scholar
  3. Brink, R.A.; Cooper, D.C. (1947): The endosperm in seed development. Bot. Rev. 13, 423–541Google Scholar
  4. Clausen, R.E.; Cameron, D.R. (1950): Inheritance in Nicotiana Tabacum: XXIII. Duplicate factors for chlorophyll production. Genetics 35, 4–10Google Scholar
  5. Cooper, D.C.; Brink, R.A. (1945): Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30, 376–401Google Scholar
  6. Cooper, D.C. (1951): Caryopsis development following matings between diploid and tetraploid strains of Zea mays. Am. J. Bot. 38, 702–708Google Scholar
  7. Darlington, C.D. (1976): The great events in chromosome evolution. In: Current chromosome research. Amsterdam: ElsevierGoogle Scholar
  8. Garcia-Olmedo, F.; Carbonero, P.; Arancillo, C.; Salcedo, G. (1978): Loss of redundant gene expression after polyploidization in plants. Experientia 34, 332–333Google Scholar
  9. Gill, B.S.; Waines, J.G. (1978): Paternal regulation of seed development in wheat hybrids. Theor. Appl. Genet. 51, 265–270Google Scholar
  10. Grant, V. (1971): Plant speciation. New York: Columbia University PressGoogle Scholar
  11. Hanneman, R.E., Jr.; Peloquin, S.J. (1967): Crossability of 24-chromosome potato hybrids with 48-chromosome cultivars. Eur. Potato J. 10, 62–73Google Scholar
  12. Hanneman, R.E., Jr.; Peloquin, S.J. (1968): Ploidy levels of progeny from diploid-tetraploid crosses in potato. Am. Potato J. 45, 255–261Google Scholar
  13. Irikura, Y. (1968): Studies on interspecific crosses of tuber-bearing Solanums. 1. Overcoming cross-incompatibility between Solanum tuberosum and other Solanum species by means of induced polyploids and haploids. Res. Bull. Hokkaido National Agr. Expt. StationGoogle Scholar
  14. Johnston, S.A.; Hanneman, R.E., Jr. (1978): Endosperm balance factors in some tuberbearing Solarium species. Am. Potato J. 55, 380 (Abstr.)Google Scholar
  15. Johnston, S.A.; Hanneman, R.E., Jr. (in press): Support of the endosperm balance number hypothesis utilizing some tuberbearing Solanum species. Am. Potato J.Google Scholar
  16. Lesins, K. (1961): Interspecific crosses involving alfalfa. 1. Medicago dzhawakhetica (Bordz.) Vass X M. sativa L. and its peculiarities. Can. J. Genet. Cytol. 3, 135–152Google Scholar
  17. Lin, B.V. (1975): Parental effects on gene expression in maize endosperm development. Madison, Wis.: Dissertation University of WisconsinGoogle Scholar
  18. Marks, G.E. (1966): The origin and significance of intraspecific polyploidy: experimental evidence from Solanum chacoense. Evolution 20, 552–557Google Scholar
  19. Mendiburu, A.O.; Peloquin, S.J. (1976): Sexual polyploidization and depolyploidization: some terminology and definitions. Theor. Appl. Genet. 48, 137–143Google Scholar
  20. Müntzing, A. (1930): Über Chromosomenvermehrung in Galeopsis — Kreuzungen und ihre phylogenetische Bedeutung. Hereditas 14, 153–172Google Scholar
  21. den Nijs, Ton P.M.; Peloquin, S.J. (1977)a: 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26, 585–600Google Scholar
  22. den Nijs, Ton P.M.; Peloquin, S.J. (1977)b: Polyploid evolution via 2n gametes. Am. Potato J. 54, 377–386Google Scholar
  23. den Nijs, Ton P.M.; Peloquin, S.J. (1977)c: The role of the endosperm in hybridization. Am. Potato J. 54, 488–489 (Abstr.)Google Scholar
  24. Nishiyama, I.; Inomata, N. (1966): Embryological studies on cross incompatibility between 2x and 4x in Brassica. Jap. J. Genet. 41, 27–42Google Scholar
  25. Nishiyama, I.; Yabuno, T. (1978): Causal relationships between the polar nuclei in double fertilization and interspecific crossincompatibility in Avena. Cytologia 43, 453–466Google Scholar
  26. Shevtsov, I.A. (1972): Hybridization of diploid and tetraploid forms of certain species of Solanum. (translated from Russian) Genetika 8, 10–45Google Scholar
  27. Stebbins, G.L. (1974): Flowering plants: evolution above the species level. Cambridge, Mass.: Belknap PressGoogle Scholar
  28. Stebbins, G.L. (1976): Seeds, seedlings, and the origin of angiosperms. In: Origin and early evolution of angiosperms. New York: Columbia University PressGoogle Scholar
  29. Stephens, S.C. (1942): Colchicine-produced polyploids in Gossypium. 1. An autotetraploid asiatic cotton and certain of its hybrids with wild diploid species. J. Genet. 44, 272–295Google Scholar
  30. Swaminathan, M.S. (1954): Nature of polyploidy in some 48-chromosome species of the genus Solanum section Tuberarium. Genetics 39, 59–76Google Scholar
  31. Tsuchiya, T. (1960): Studies on cross compatibility of diploid, triploid and tetraploid barleys. 2. Results of crosses between triploids, diploids and induced autotetraploids. Jap. J. Genet. 35, 337–343Google Scholar
  32. Valentine, D.H. (1954): Seed incompatibility. Proc. 8th International Bot. Congr. Section 9, 170Google Scholar
  33. Valentine, D.H. (1956): Studies in British Primula. 5. The inheritance of seed incompatibility. New Phytol. 55, 305–318Google Scholar
  34. von Wangenheim, K.H. (1955): Zur Ursache der Kreuzungsschwierigkeiten zwischen Solanum tuberosum L. und S. acaule Bitt. bzw. S. stoloniferum Schlechtd. et Bouché. Z. Pflanzenzücht. 34, 748Google Scholar
  35. von Wangenheim, K.H. (1957): Untersuchungen über den Zusammenhang zwischen Chromosomenzahl und Kreuzbarkeit bei Solanum — Arten. Z. ind. Abst. Vererbungsl. 88, 21–37Google Scholar
  36. von Wangenheim, K.H.; Peloquin, S.J.; Hougas, R.W. (1960): Embryological investigations on the formation of haploids in the potato (Solanum tuberosum). Z. Vererbungsl. 91, 391–399Google Scholar
  37. Watkins, A.E. (1932): Hybrid sterility and incompatibility. J. Genet. 25, 125–162Google Scholar
  38. Wellensiek, S.J. (1955): The genetics of diploid X tetraploid and reciprocal cyclamen crosses. Züchter 25, 229–230Google Scholar
  39. Woodell, S.R.J.; Valentine, D.H. (1961): Studies in British Primula. 9. Seed incompatibilities in diploid-autotetraploid crosses. New Phytol. 60, 282–294Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • S. A. Johnston
    • 1
    • 2
  • T. P. M. den Nijs
    • 1
    • 2
    • 3
  • S. J. Peloquin
    • 1
    • 2
  • R. E. HannemanJr.
    • 1
    • 2
  1. 1.Departments of Genetics and HorticultureUniversity of WisconsinMadison
  2. 2.Science and Education Administration, Agricultural ResearchUSDAUSA
  3. 3.I.V.T.Wageningenthe Netherlands

Personalised recommendations