Journal of Mathematical Biology

, Volume 24, Issue 2, pp 167–191 | Cite as

Predator-mediated competition in the chemostat

  • G. J. Butler
  • G. S. K. Wolkowicz


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aris, R., Humphrey, A. E.: Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19, 1375–1386 (1977)Google Scholar
  2. 2.
    Armstrong, R. A., McGehee, R.: Competitive exclusion. Am. Nat. 115, 151–170 (1980)Google Scholar
  3. 3.
    Bungay, H. R., Bungay, M. L.: Microbial interactions in continuous culture. Adv. Appl. Microbiol. 10, 269–312 (1968)Google Scholar
  4. 4.
    Butler, G. J., Hsu, S. B., Waltman, P.: Coexistence of competing predators in a chemostat. J. Math. Biology 17, 133–151 (1983)Google Scholar
  5. 5.
    Butler, G. J., Wolkowicz, G. S. K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)Google Scholar
  6. 6.
    Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Amer. Math. Soc. 96, 425–430 (1986)Google Scholar
  7. 7.
    Canale, R. P.: An analysis of models describing predator-prey interaction. Biotech. Bioeng. 17, 353–378 (1970)Google Scholar
  8. 8.
    Coppel, W. A.: Stability and asymptotic behaviour of differential equations. D. C. Heath, New York 1965Google Scholar
  9. 9.
    Cramer, N. F., May, R. M.: Interspecific competition, predation, and species diversity: a comment J. Theoret. Biol. 34, 289–293 (1972)Google Scholar
  10. 10.
    Dayton, P. K.: Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Mongr. 41, 351–389 (1971)Google Scholar
  11. 11.
    Dayton, P. K., Robilliard, G. A., Paine, R. T., Dayton, L. B.: Biological accommodation in benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974)Google Scholar
  12. 12.
    Drake, J. F., Tsuchiya, H. M.: Predation of Escherichia coli by Colpoda stenil. Appl. Envir. Microbiol. 31, 870–874 (1976)Google Scholar
  13. 13.
    Freedman, H. I.: Deterministic mathematical models in population ecology. Marcel Dekker, Inc., New York 1980Google Scholar
  14. 14.
    Freedman, H. I., Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosci. 33, 257–276 (1977)Google Scholar
  15. 15.
    Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)Google Scholar
  16. 16.
    Gard, T. C.: Persistence in food chains with general interactions. Math. Biosci. 51, 165–174 (1980)Google Scholar
  17. 17.
    Gard, T. C.: Mathematical analysis of some resource-prey-predator models: application to a NPZ microcosm model. In: Freedman, H. I., Strobeck, C. (eds.) Population biology proceedings. Edmonton 1982, Lecture Notes Biomath. 52, Springer, Berlin, Heidelberg, New York 1982Google Scholar
  18. 18.
    Gilpin, M. E.: Spiral chaos in a predator-prey model. Am. Nat. 113, 306–308 (1978)Google Scholar
  19. 19.
    Hallam, T. G., Svoboda, L. J., Gard, T. C.: Persistence and extinction in three species Lotka-Volterra competitive systems. Math. Biosci. 46, 117–124 (1979)Google Scholar
  20. 20.
    Hansen, S. R., Hubbell, S. P.: Single-nutrient microbial competition: qualitative agreement between experimental and theoretical forecast outcomes. Science 213, 972–979 (1981)Google Scholar
  21. 21.
    Hsu, S. B., Hubbell, S., Waltman, P.: A mathematical theory of single-nutrient competition in continuous cultures for microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977)Google Scholar
  22. 22.
    Hutson, V., Vickers, G. T.: A criterion for permanent coexistence of species, with an application to a two-prey one predator system. Math. Biosci. 63, 253–269 (1983)Google Scholar
  23. 23.
    Jost, J. L., Drake, J. F., Tsuchiya, H. M., Fredrickson, A. G.: Microbial food chains and food webs. J. Theor. Biol. 41, 461–484 (1973)Google Scholar
  24. 24.
    Jost, J. L., Drake, J. F., Fredrickson, A. G., Tsuchiya, H. M.: Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113, 834–840 (1973)Google Scholar
  25. 25.
    Kubitschek, H. E.: Introduction to research with continuous cultures. Prentice-Hall, New York 1970Google Scholar
  26. 26.
    Levin, S. A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970)Google Scholar
  27. 27.
    May, R. M.: Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971)Google Scholar
  28. 28.
    M'Kendrick, A. G., Pai, M. K.: The rate of multiplication of microorganisms: a mathematical study. Proc. R. Soc. Edinb. 31, 649–655 (1910)Google Scholar
  29. 29.
    Monod, J.: Recherches sur la croissance des cultures bacteriennes. Herman et Cie., Paris 1942Google Scholar
  30. 30.
    Neill, W. E.: Experimental studies of microcrustacean competition, community composition and efficiency of resource utilization. Ecology 56, 809–826 (1975)Google Scholar
  31. 31.
    Novick, A., Szilard, L.: Description of the chemostat. Science 112, 715–716 (1950)Google Scholar
  32. 32.
    Paine, R. T.: Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966)Google Scholar
  33. 33.
    Paine, R. T.: Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15, 93–120 (1974)Google Scholar
  34. 34.
    Porter, J. W.: Predation by acenthaster and its effect on coral species diversity. Am. Nat. 106, 487–492 (1972)Google Scholar
  35. 35.
    Rosenzweig, M. L.: Paradox of enrichment. Destabilization of exploitation ecosystems in ecological time. Science 171 385–387 (1971)Google Scholar
  36. 36.
    Saunders, P. T., Bazin, M. J.: On the stability of food chains. J. Theor. Biol. 52, 121–142 (1975)Google Scholar
  37. 37.
    Sell, G.: What is a dynamical system? In: Hale, J. K (ed.) Studies in ordinary differential equations, MAA Studies in Mathematics 14, (1977)Google Scholar
  38. 38.
    Slobodkin, L. B.: Ecological populations of Hydrida. J. Anim. Ecol. 33 (Suppl.) 131–148 (1964)Google Scholar
  39. 39.
    Smale, S.: On the differential equations of species competition. J. Math. Biol. 3, 5–7 (1976)Google Scholar
  40. 40.
    So, J. W. H.: A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain. J. Theor. Biol. 80, 185–187 (1979)Google Scholar
  41. 41.
    Taylor, P. A., Williams, P. J. LeB.: Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21, 90–98 (1975)Google Scholar
  42. 42.
    Tsuchiya, H. M., Drake, S. F., Jost, J. L., Fredrickson, A. G.: Predator-prey interaction of Dictoyostelium discordeum and Escherichia coli in continuous culture. J. Bacteriol. 110, 1147–1153 (1972)Google Scholar
  43. 43.
    Vance, R. R.: Predation and resource partitioning in a one predator-two prey model community. Am. Nat. 112, 797–813 (1978)Google Scholar
  44. 44.
    Veldkamp, H.: Ecological studies with the chemostat. Adv. Microbiol. Ecol. 1, 59–95 (1977)Google Scholar
  45. 45.
    Waltman, P., Hubbell, S. P., Hsu, S. B.: Theoretical and experimental investigation of microbial competition in continuous culture. In: Burton, T. (ed.) Modelling and differential equations in biology. Marcel Dekker, New York 1980Google Scholar
  46. 46.
    Wolkowicz, G. S. K.: An analysis of mathematical models related to the chemostat. Ph.D. thesis, University of Alberta 1984Google Scholar
  47. 47.
    Yang, R. D., Humphrey, A. E.: Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17, 1211–1235 (1975)Google Scholar
  48. 48.
    Zaret, T. M.: Predator-prey interaction in a tropical lacustrine ecosystem. Ecology 53, 248–257 (1972)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. J. Butler
    • 1
  • G. S. K. Wolkowicz
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations