Journal of Mathematical Biology

, Volume 24, Issue 2, pp 167–191 | Cite as

Predator-mediated competition in the chemostat

  • G. J. Butler
  • G. S. K. Wolkowicz


Stochastic Process Probability Theory Mathematical Biology Matrix Theory Multilinear Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aris, R., Humphrey, A. E.: Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19, 1375–1386 (1977)Google Scholar
  2. 2.
    Armstrong, R. A., McGehee, R.: Competitive exclusion. Am. Nat. 115, 151–170 (1980)Google Scholar
  3. 3.
    Bungay, H. R., Bungay, M. L.: Microbial interactions in continuous culture. Adv. Appl. Microbiol. 10, 269–312 (1968)Google Scholar
  4. 4.
    Butler, G. J., Hsu, S. B., Waltman, P.: Coexistence of competing predators in a chemostat. J. Math. Biology 17, 133–151 (1983)Google Scholar
  5. 5.
    Butler, G. J., Wolkowicz, G. S. K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)Google Scholar
  6. 6.
    Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Amer. Math. Soc. 96, 425–430 (1986)Google Scholar
  7. 7.
    Canale, R. P.: An analysis of models describing predator-prey interaction. Biotech. Bioeng. 17, 353–378 (1970)Google Scholar
  8. 8.
    Coppel, W. A.: Stability and asymptotic behaviour of differential equations. D. C. Heath, New York 1965Google Scholar
  9. 9.
    Cramer, N. F., May, R. M.: Interspecific competition, predation, and species diversity: a comment J. Theoret. Biol. 34, 289–293 (1972)Google Scholar
  10. 10.
    Dayton, P. K.: Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Mongr. 41, 351–389 (1971)Google Scholar
  11. 11.
    Dayton, P. K., Robilliard, G. A., Paine, R. T., Dayton, L. B.: Biological accommodation in benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974)Google Scholar
  12. 12.
    Drake, J. F., Tsuchiya, H. M.: Predation of Escherichia coli by Colpoda stenil. Appl. Envir. Microbiol. 31, 870–874 (1976)Google Scholar
  13. 13.
    Freedman, H. I.: Deterministic mathematical models in population ecology. Marcel Dekker, Inc., New York 1980Google Scholar
  14. 14.
    Freedman, H. I., Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosci. 33, 257–276 (1977)Google Scholar
  15. 15.
    Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)Google Scholar
  16. 16.
    Gard, T. C.: Persistence in food chains with general interactions. Math. Biosci. 51, 165–174 (1980)Google Scholar
  17. 17.
    Gard, T. C.: Mathematical analysis of some resource-prey-predator models: application to a NPZ microcosm model. In: Freedman, H. I., Strobeck, C. (eds.) Population biology proceedings. Edmonton 1982, Lecture Notes Biomath. 52, Springer, Berlin, Heidelberg, New York 1982Google Scholar
  18. 18.
    Gilpin, M. E.: Spiral chaos in a predator-prey model. Am. Nat. 113, 306–308 (1978)Google Scholar
  19. 19.
    Hallam, T. G., Svoboda, L. J., Gard, T. C.: Persistence and extinction in three species Lotka-Volterra competitive systems. Math. Biosci. 46, 117–124 (1979)Google Scholar
  20. 20.
    Hansen, S. R., Hubbell, S. P.: Single-nutrient microbial competition: qualitative agreement between experimental and theoretical forecast outcomes. Science 213, 972–979 (1981)Google Scholar
  21. 21.
    Hsu, S. B., Hubbell, S., Waltman, P.: A mathematical theory of single-nutrient competition in continuous cultures for microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977)Google Scholar
  22. 22.
    Hutson, V., Vickers, G. T.: A criterion for permanent coexistence of species, with an application to a two-prey one predator system. Math. Biosci. 63, 253–269 (1983)Google Scholar
  23. 23.
    Jost, J. L., Drake, J. F., Tsuchiya, H. M., Fredrickson, A. G.: Microbial food chains and food webs. J. Theor. Biol. 41, 461–484 (1973)Google Scholar
  24. 24.
    Jost, J. L., Drake, J. F., Fredrickson, A. G., Tsuchiya, H. M.: Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113, 834–840 (1973)Google Scholar
  25. 25.
    Kubitschek, H. E.: Introduction to research with continuous cultures. Prentice-Hall, New York 1970Google Scholar
  26. 26.
    Levin, S. A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970)Google Scholar
  27. 27.
    May, R. M.: Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971)Google Scholar
  28. 28.
    M'Kendrick, A. G., Pai, M. K.: The rate of multiplication of microorganisms: a mathematical study. Proc. R. Soc. Edinb. 31, 649–655 (1910)Google Scholar
  29. 29.
    Monod, J.: Recherches sur la croissance des cultures bacteriennes. Herman et Cie., Paris 1942Google Scholar
  30. 30.
    Neill, W. E.: Experimental studies of microcrustacean competition, community composition and efficiency of resource utilization. Ecology 56, 809–826 (1975)Google Scholar
  31. 31.
    Novick, A., Szilard, L.: Description of the chemostat. Science 112, 715–716 (1950)Google Scholar
  32. 32.
    Paine, R. T.: Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966)Google Scholar
  33. 33.
    Paine, R. T.: Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15, 93–120 (1974)Google Scholar
  34. 34.
    Porter, J. W.: Predation by acenthaster and its effect on coral species diversity. Am. Nat. 106, 487–492 (1972)Google Scholar
  35. 35.
    Rosenzweig, M. L.: Paradox of enrichment. Destabilization of exploitation ecosystems in ecological time. Science 171 385–387 (1971)Google Scholar
  36. 36.
    Saunders, P. T., Bazin, M. J.: On the stability of food chains. J. Theor. Biol. 52, 121–142 (1975)Google Scholar
  37. 37.
    Sell, G.: What is a dynamical system? In: Hale, J. K (ed.) Studies in ordinary differential equations, MAA Studies in Mathematics 14, (1977)Google Scholar
  38. 38.
    Slobodkin, L. B.: Ecological populations of Hydrida. J. Anim. Ecol. 33 (Suppl.) 131–148 (1964)Google Scholar
  39. 39.
    Smale, S.: On the differential equations of species competition. J. Math. Biol. 3, 5–7 (1976)Google Scholar
  40. 40.
    So, J. W. H.: A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain. J. Theor. Biol. 80, 185–187 (1979)Google Scholar
  41. 41.
    Taylor, P. A., Williams, P. J. LeB.: Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21, 90–98 (1975)Google Scholar
  42. 42.
    Tsuchiya, H. M., Drake, S. F., Jost, J. L., Fredrickson, A. G.: Predator-prey interaction of Dictoyostelium discordeum and Escherichia coli in continuous culture. J. Bacteriol. 110, 1147–1153 (1972)Google Scholar
  43. 43.
    Vance, R. R.: Predation and resource partitioning in a one predator-two prey model community. Am. Nat. 112, 797–813 (1978)Google Scholar
  44. 44.
    Veldkamp, H.: Ecological studies with the chemostat. Adv. Microbiol. Ecol. 1, 59–95 (1977)Google Scholar
  45. 45.
    Waltman, P., Hubbell, S. P., Hsu, S. B.: Theoretical and experimental investigation of microbial competition in continuous culture. In: Burton, T. (ed.) Modelling and differential equations in biology. Marcel Dekker, New York 1980Google Scholar
  46. 46.
    Wolkowicz, G. S. K.: An analysis of mathematical models related to the chemostat. Ph.D. thesis, University of Alberta 1984Google Scholar
  47. 47.
    Yang, R. D., Humphrey, A. E.: Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17, 1211–1235 (1975)Google Scholar
  48. 48.
    Zaret, T. M.: Predator-prey interaction in a tropical lacustrine ecosystem. Ecology 53, 248–257 (1972)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. J. Butler
    • 1
  • G. S. K. Wolkowicz
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations