Journal of Mathematical Biology

, Volume 20, Issue 3, pp 231–258 | Cite as

Evolutionary dynamics of zero-sum games

  • Ethan Akin
  • Viktor Losert


Aim model in terms of differential equations is used to explain mammalian ovulation control, in particular regulation for a prescribed number of mature eggs.

Key words

Ovulation regulation of egg number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Marsden, J.: Foundation of Mechanics (2nd Ed.) Reading, Mass. The Benjamin/Cummings Publishing Company, Inc. 1978Google Scholar
  2. 2.
    Akin, E.: The Geometry of Population Genetics. Lecture Notes in Biomathematics, Vol. 31. Springer 1979Google Scholar
  3. 3.
    Akin, E., Hofbauer, J.: Recurrence of the Unfit. Math. Biosciences 61, 51–62 (1982)MathSciNetGoogle Scholar
  4. 4.
    Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Conference Series No. 38, American Mathematical Society 1978Google Scholar
  5. 5.
    Eigen, M., Schuster, P.: The Hypercycle. Springer 1979Google Scholar
  6. 6.
    Gale, D.: The Theory of Linear Economic Models. New York: McGraw-Hill 1960Google Scholar
  7. 7.
    Hines, W. G. S.: Three Characterizations of Population Strategy Stability. J. Appl. Prob. 17, 333–340 (1980)MATHMathSciNetGoogle Scholar
  8. 8.
    Hofbauer, J.: A difference equation model for the hypercycle. SIAM J. Appl. Math. to appear (1984)Google Scholar
  9. 9.
    Karlin, S.: Mathematical Methods and Theory in Games, Programming and Economics. Reading, Mass. Addison-Wesley 1959Google Scholar
  10. 10.
    Losert, V., Akin, E.: Dynamics of games and genes: Discrete versus continuous time. J. Math. Biol. 17, 241–251 1983CrossRefMathSciNetGoogle Scholar
  11. 11.
    Maynard Smith, J.: Evolution and the Theory of Games. Cambridge: Cambridge University Press 1982Google Scholar
  12. 12.
    Nagylaki, T.: Evolution of a large population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 5941–5945 1983aMATHMathSciNetGoogle Scholar
  13. 13.
    Nagylaki, T.: Evolution of a finite population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 6278–6281 1983bMATHMathSciNetGoogle Scholar
  14. 14.
    Smale, S.: The Ω-stability Theorem. Proc. Symp. in Pure Math. Vol. XIV, American Mathematical Society 1970Google Scholar
  15. 15.
    Taylor, P., Jonker, L.: Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145–156 1978CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Ethan Akin
    • 1
  • Viktor Losert
    • 2
  1. 1.Mathematics DepartmentThe City CollegeNew YorkUSA
  2. 2.Institut für MathematikUniversität WienWienAustria

Personalised recommendations