Journal of Mathematical Biology

, Volume 9, Issue 2, pp 147–177 | Cite as

Biased random walk models for chemotaxis and related diffusion approximations

  • Wolgang Alt
Article

Summary

Stochastic models of biased random walk are discussed, which describe the behavior of chemosensitive cells like bacteria or leukocytes in the gradient of a chemotactic factor. In particular the turning frequency and turn angle distributions are derived from certain biological hypotheses on the background of related experimental observations. Under suitable assumptions it is shown that solutions of the underlying differential-integral equation approximately satisfy the well-known Patlak-Keller-Segel diffusion equation, whose coefficients can be expressed in terms of the microscopic parameters. By an appropriate energy functional a precise error estimation of the diffusion approximation is given within the framework of singular perturbation theory.

Key words

Chemotaxis Biased random walk Diffusion equations Singular perturbation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht-Buehler, G.: Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12, 333–339 (1977)Google Scholar
  2. 2.
    Albrecht-Buehler, G.: The angular distribution of directional changes of guided 3T3 cells. J. Cell Biol. 80, 53–60 (1979)Google Scholar
  3. 3.
    Allan, R. B., Wilkinson, P. C.: A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leukocytes. Exp. Cell Res. 111, 191–203 (1978)Google Scholar
  4. 4.
    Alt, W.: Orientation of cells migrating in a chemotactic gradient. In: Proc. Conf. on Models of Biological Growth and Spread, Heidelberg, 1979 (to appear)Google Scholar
  5. 5.
    Alt, W.: Singular perturbation of differential integral equations describing biased random walks. Crelle J. Reine Angew. Math. (submitted)Google Scholar
  6. 6.
    Berg, H. C., Brown, D. A.: Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. In: Antibiotics and Chemotherapy, Vol. 19, pp. 55–78. Basel: Karger, 1974Google Scholar
  7. 7.
    Berg, H. C., Tedesco, P. M.: Transient response to chemotactic stimuli in Escherichia coli. Proc. Nat. Acad. Sci. USA 72, 3235–3239 (1975)Google Scholar
  8. 8.
    Brown, D. A., Berg H. C.: Temporal stimulation of chemotaxis in Escherichia coli. Proc. Nat. Acad. Sci. USA 71, 1388–1392 (1974)Google Scholar
  9. 9.
    Boyarsky, A., Noble, P. B.: A Markov chain characterization of human neutrophil locomotion under neutral and chemotactic conditions. Can. J. Physiol. Pharmacology 55, 1–6 (1977)Google Scholar
  10. 10.
    Dipasquale, A.: Locomotory activity of epithelial cells in culture. Exp. Cell Res. 94, 191–215 (1975)Google Scholar
  11. 11.
    Gallin, J. I., Gallin, E. K., Malech, H. L., Cramer, E. B.: Structural and ionic events during leukocyte chemotaxis. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 123–141. New York: Raven Press, 1978Google Scholar
  12. 12.
    Gerisch, G., Hess, B., Malchow, D.: Cell communication and cyclic-AMP regulation during aggregation of the slime mold dictyostelium discoideum. In: Biochemistry of sensory functions (L. Jaenicke, ed.) pp. 279–298. Berlin, Heidelberg, New York: Springer Verlag, 1974Google Scholar
  13. 13.
    Hall, R. L.: Amoeboid movement as a correlated walk. J. math. Biol. 4, 327–335 (1977)Google Scholar
  14. 14.
    Hall, R. L., Peterson, S. C.: Trajectories of human granulocytes. Biophys. J. 25, 365–372 (1979)Google Scholar
  15. 15.
    Jungi, T. W.: Different concentrations of chemotactic factors can produce attraction or migration inhibition of leukocytes. Int. Archs. Allergy appl. Immun. 53, 29–36 (1977)Google Scholar
  16. 16.
    Keller, E. F.: Mathematical aspects of bacterial chemotaxis. In: Antibiotics and Chemotherapy, Vol. 19, pp. 79–93. Basel: Karger, 1974Google Scholar
  17. 17.
    Keller, E. F., Segel, L. A.: Model for chemotaxis. J. theor. Biol. 30, 225–234 (1971).Google Scholar
  18. 18.
    Koshland, D. E., jr.: A response regulator model in a simple sensory system. Science 196, 1055–1063 (1977)Google Scholar
  19. 19.
    Kurtz, Th. G.: A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12, 55–67 (1973)Google Scholar
  20. 20.
    Lauffenburger, D., Keller, K. H.: Effects of leukocyte random motility and chemotaxis in tissue inflammatory response. J. theor. Biol. 81, 475–503 (1979)Google Scholar
  21. 21.
    Lovely, P. S., Dahlquist, F. W.: Statistical measures of bacterial motility and chemotaxis. J. theor. Biol. 50, 477–496 (1975)Google Scholar
  22. 22.
    MacNab, R., Koshland, D. E., jr.: The gradient-sensing mechanism in bacterial chemotaxis. Proc. Nat. Acad. Sci. USA 69, 2509–2512 (1972)Google Scholar
  23. 23.
    MacNab, R., Koshland, D. E., jr.: Persistence as a concept in the motility of chemotactic bacteria. J. Mechanochem. Cell Motility 2, 141–148 (1973)Google Scholar
  24. 24.
    Maderazo, E. G., Woronick, Ch. L.: A modified micropore filter assay of human granulocyte leukotaxis. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 43–55. New York: Raven Press, 1978Google Scholar
  25. 25.
    Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. math. Phys. 61, 119–148 (1978)Google Scholar
  26. 26.
    Nossal, R.: Directed cell locomotion arising from strongly biased turn angles. Math. Biosc. 31, 121–129 (1976)Google Scholar
  27. 27.
    Nossal, R.: Mathematical theories of topotaxis. In: Proc. Conf. on Models of Biological Growth and Spread. Heidelberg, 1979 (to appear)Google Scholar
  28. 28.
    Nossal, R., Weiss, G. H.: Analysis of a densiometric assay for bacterial chemotaxis. J. theor. Biol. 41, 143–147 (1973)Google Scholar
  29. 29.
    Nossal, R., Weiss, G. H.: A descriptive theory of cell migration on surfaces. J. theor. Biol. 47, 103–113 (1974)Google Scholar
  30. 30.
    Nossal, R., Zigmond, S. H.: Chemotropism indices for polymorphonuclear leukocytes. Biophys. J. 16, 1171–1182 (1976)Google Scholar
  31. 31.
    Ordal, G. W., Fields, R. B.: A biochemical mechanism for bacterial chemotaxis. J. theor. Biol. 68, 491–500 (1977)Google Scholar
  32. 32.
    Papanicolaou, G. C.: Some probabilistic problems and methods in singular perturbations. Rocky Mount. J. Math. 6, 653–674 (1976)Google Scholar
  33. 33.
    Papanicolaou, G. C.: Introduction to the asymptotic analysis of stochastic equations. In: Modern modeling of continuum phenomena. AMS Lectures in Appl. Math., Vol. 16 (R. C. DiPrima, ed.) pp. 109–147. Providence, 1977Google Scholar
  34. 34.
    Patlak, C. S.: Random walk with persistence and external bias. Bull. math. Biophys. 15, 311–338 (1953)Google Scholar
  35. 35.
    Peterson, S. C., Noble, P. B.: A two-dimensional random-walk analysis of human granulocyte movement. Biophys. J. 12, 1048–1055 (1972)Google Scholar
  36. 36.
    Ramsey, W. S.: Analysis of individual leukocyte behaviour during chemotaxis. Exp. Cell Res. 70, 129–139 (1972)Google Scholar
  37. 37.
    Segel, L. A.: A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665 (1977)Google Scholar
  38. 38.
    Segel, L. A.: Mathematical models for cellular behavior. In: A study in mathematical biology. MAA Studies in Math. Vol. 15 (S. Levin, ed.) pp. 156–190. Washington, 1978Google Scholar
  39. 39.
    Stossel, Th. P.: The mechanism of leukocyte locomotion. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 143–160. New York: Raven Press, 1978Google Scholar
  40. 40.
    Stroock, D. W.: Some stochastic processes which arise from a model of the motion of a bacterium. Zeitschr. Wahrsch.th. 28, 305–315 (1974)Google Scholar
  41. 41.
    Zigmond, S. H.: Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature 249, 450–452 (1974)Google Scholar
  42. 42.
    Zigmond, S. H.: Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)Google Scholar
  43. 43.
    Zigmond, S. H.: Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77, 269–287 (1978)Google Scholar
  44. 44.
    Zigmond, S. H., Hirsch, J. G.: Leukocyte locomotion and chemotaxis. J. Exp. Medicine 137, 387–410 (1973)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Wolgang Alt
    • 1
  1. 1.Institut für Angewandte MathematikHeidelbergFederal Republic of Germany

Personalised recommendations