Journal of Mathematical Biology

, Volume 27, Issue 3, pp 327–340 | Cite as

Compensation type algorithms for neural nets: stability and convergence

  • L. J. Cromme
  • I. E. Dammasch
Article

Abstract

Plasticity of synaptic connections plays an important role in the temporal development of neural networks which are the basis of memory and behavior. The conditions for successful functional performance of these nerve nets have to be either guaranteed genetically or developed during ontogenesis. In the latter case, a general law of this development may be the successive compensation of disturbances. A compensation type algorithm is analyzed here that changes the connectivity of a given network such that deviations from each neuron's equilibrium state are reduced. The existence of compensated networks is proven, the convergence and stability of simulations are investigated, and implications for cognitive systems are discussed.

Key words

Neural modeling McCulloch-Pitts networks Compensation algorithm Cognitive systems Fixed points (approximate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower, E. L., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev. 22, 28–85 (1980).Google Scholar
  2. Changeux, J. P., Danchin, A.: Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976)Google Scholar
  3. Clark, J. W., Winston, J. V., Rafelski, J.: Self-organization of neural networks. Phys. Lett. 102A, no. 4 (1984)Google Scholar
  4. Cromme, L. J.: Neural nets with prescribed average firing activity. NAM-Bericht 57, Institut für Numerische und Angewandte Mathematik der Universität, Göttingen 1988Google Scholar
  5. Cromme, L. J., Diener, I.: Fixed point theorems for discontinuous mappings. Math. Programming, submittedGoogle Scholar
  6. Dammasch, I. E.: A mechanism for stabilizing intelligent properties of neural networks. In: Rose, J. (ed.) Proceedings of the Seventh International Congress of Cybernetics and Systems, pp. 864–871. Lytham St. Annes: Thales 1987Google Scholar
  7. Dammasch, I. E., Wagner, G. P.: On the properties of randomly connected McCulloch-Pitts networks: Differences between input-constant and input-variant networks. Cybern. Syst. 15, 91–117 (1984)Google Scholar
  8. Dammasch, I. E., Wagner, G. P., Wolff, J. R.: Self-stabilization of neuronal networks I. The compensation algorithm for synaptogenesis. Biol. Cybern. 54, 211–222 (1986)Google Scholar
  9. Dammasch, I. E., Wagner, G. P., Wolff, J. R.: Self-stabilization of neuronal networks II. Stability conditions for synaptogenesis. Biol. Cybern. 58, 149–158 (1988).Google Scholar
  10. Fukushima, K., Miyake, S.: Neocognitron. Pattern Recognition 15.6, 455–469 (1982)Google Scholar
  11. Griffith, J. S.: Mathematical neurobiology. London: Academic Press 1971Google Scholar
  12. Jacobson, M.: Development of specific neuronal connections. Science 163, 543–547 (1969)Google Scholar
  13. Jacobson, M.: Developmental neurobiology. New York: Plenum Press 1978Google Scholar
  14. Joó, F., Dames, W., Wolff, J. R.: Effect of prolonged sodium bromide administration on the fine structure of dendrites in the superior cervical ganglion of adult rat. Prog. Brain Res. 51, 109–115 (1979)Google Scholar
  15. Malsburg, C. von der: Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chemie, 89, 703–710 (1985)Google Scholar
  16. McCulloch, W. S., Pitts, W. H.: A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)Google Scholar
  17. Minsky, M., Papert, S.: Perceptrons. Cambridge, Mass.: MIT Press 1969Google Scholar
  18. Reichardt, W.: Processing of optical information by the visual system of the fly. Vision Res. 26, 113–126 (1986)Google Scholar
  19. Todd, M.: The computation of fixed points and applications. Berlin Heidelberg New York: Springer 1976Google Scholar
  20. Torras i Genis, C.: Temporal-pattern learning in neural models. Berlin Heidelberg New York Tokyo: Springer 1985Google Scholar
  21. Wolff, J. R.: Some morphogenetic aspects of the development of the central nervous system. In: Immelmann, K., Barlow, G. W., Main, M., Petrinovich, L. (eds.) New York: Cambridge University Press 1981Google Scholar
  22. Wolff, J. R., Joó, F., Dames, W., Fehér, O.: Induction and maintenance of free postsynaptic membrane thickenings in the adult superior cervical ganglion. J. Neurocytol. 8, 549–563 (1979)Google Scholar
  23. Wolff, J. R., Wagner, G. P.: Self-organization in synaptogenesis: Interaction between the formation of excitatory and inhibitory synapses. In: Basar, E., Flohr, H., Haken, H., Mandell, A. J. (eds.) Synergetics of the brain, pp. 50–59. Berlin Heidelberg New York Tokyo: Springer 1983Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. J. Cromme
    • 1
  • I. E. Dammasch
    • 2
  1. 1.Institut für Angewandte Mathematik der Universität GöttingenGöttingenFederal Republic of Germany
  2. 2.Zentrum Anatomie der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations