Potential Analysis

, Volume 5, Issue 6, pp 611–625 | Cite as

Invariance of closed convex sets and domination criteria for semigroups

  • El-Maati Ouhabaz


Let a and b be two positive continuous and closed sesquilinear forms on the Hilbert space H=L2(Ω, μ). Denote by T=T(t)t≧0and S=S(t)t≧0the semigroups generated by a and b on H. We give criteria in terms of a and b guaranteeing that the semigroup T is dominated by S, i.e. |T(t)f|≦S(t)|f| for all t≧0 and fH. The method proposed uses ideas on invariance of closed convex sets of H under semigroups. Applications to elliptic operators and concrete examples are given.

Mathematics Subject Classifications (1991)

47A63 47B65 47A15 

Key words

sesquilinear forms convex sets positivity of semigroups domination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.Adams: Sobolev Spaces, New York, London, Academic Press 1975.Google Scholar
  2. 2.
    S.Albeveiro, Z. M.Ma and M.Röckner. ‘Non-symmetric Dirichlet forms and Markov processes on general state space’, C. R. Acad. Sci. Paris t. 314, serie 1 (1992), 77–82.Google Scholar
  3. 3.
    A.Ancona: ‘Sur les espaces de Dirichlet: principes, fonctions de Green’, J. Math. Pures et Appl. 54 (1975), 75–124.Google Scholar
  4. 4.
    W.Arendt and C.Batty: ‘Absorption semigroups and Dirichlet boundary conditions’, Math. Annal. 295 (1993), 427–448.Google Scholar
  5. 5.
    Ph. Bénilan and M. Crandall: ‘Completely accretive operators’, Proc. 2 nd Int. Conf. on Semigroup Theory and Evolution Equations, Delft 1989. Marcel Dekker (to appear).Google Scholar
  6. 6.
    H. Brezis: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland, 1973.Google Scholar
  7. 7.
    H.Brezis: Analyse Fonctionnelle, Théorie et Application, Masson, Paris 3d edition, 1992.Google Scholar
  8. 8.
    H.Brezis and A.Pazy: ‘Semigroups of non linear contractions on convex sets’, J. Funct. Analysis 6 (1970), 237–281.Google Scholar
  9. 9.
    E. B. Davies: Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.Google Scholar
  10. 10.
    M.Fukushima: Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 1980.Google Scholar
  11. 11.
    H.Hess, R.Schrader and D. A.Uhlenbrock: ‘Domination of semigroups and generalization of Kato's inequality’, Duke math. J. 44 (1977), 893–904.Google Scholar
  12. 12.
    T.Kato: Perturbation Theory of Linear Operators, Springer-Verlag Berlin, 1966.Google Scholar
  13. 13.
    T.Kato: ‘Remarks on Schrödinger operators with vector potentials’, Int. Equ. Op. Theory 1 (1979), 103–113.Google Scholar
  14. 14.
    T.Kato: ‘Trotter's product formula for an arbitrary pair of selfadjoint operators’, Advances in Mathematics Supplementary Studies, Eds Goldberg and Kac, vol. 3 (1978), 185–195.Google Scholar
  15. 15.
    A.Kishimoto and D. W.Robinson: ‘Positivity and monotonicity properties of C 0-semigroups II’, Comm. Math. Phys. 75 (1980), 85–101.Google Scholar
  16. 16.
    M. Z. Ma and M. Röckner: Introduction to (non-Symmetric) Dirichlet Forms, Springer, 1992.Google Scholar
  17. 17.
    R. Nagel: One-parameter Semigroups of Positive Operators, Lect. Notes in Math. Springer 1184, Berlin, 1986.Google Scholar
  18. 18.
    E. M.Ouhabaz: ‘L -contractivity of semigroups generated by sectorial forms’, J. London Math. Soc. 2 (46), (1992), 529–542.Google Scholar
  19. 19.
    E. M. Ouhabaz: Propriétés d'Ordre et de Contractivité des Semi-groupes avec Applications aux Opérateurs Elliptiques, Ph.D. Thesis, Besançon, 1992.Google Scholar
  20. 20.
    H.Schaefer: Banach Lattices and Positive Operators, Springer, Berlin, 1974.Google Scholar
  21. 21.
    M. L.Silverstein: Symmetric Markov Processes, Lect. Notes in Math. 426, Springer, Berlin, 1974.Google Scholar
  22. 22.
    B.Simon: ‘Kato's inequality and the comparison of semigroups’, J. Funct. Analysis 32 (1979), 97–101.Google Scholar
  23. 23.
    B.Simon: ‘Maximal and minimal Schrödinger forms’, J. Op. Theory 1 (1979), 37–47.Google Scholar
  24. 24.
    B.Simon: ‘Schrödinger semigroups’, Bull. Amer. Math. Soc., 7 (3) (1982), 447–526.Google Scholar
  25. 25.
    P.Stollmann: ‘Closed ideals in Dirichlet spaces’, Potential Analysis 2 (1993), 263–268.Google Scholar
  26. 26.
    P. Stollmann and J. Voigt: Perturbation of Dirichlet forms by measures (Preprint).Google Scholar
  27. 27.
    H.Tanabe: Equations of Evolution, Pitman, London, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • El-Maati Ouhabaz
    • 1
    • 2
  1. 1.SFB 288Technische Universität BerlinBerlinGermany
  2. 2.Max-Planck Arbeitsgruppe, FB MathematikUniversität PotsdamPotsdamGermany

Personalised recommendations