Journal of Mathematical Biology

, Volume 15, Issue 3, pp 267–273

Simplified neuron model as a principal component analyzer

  • Erkki Oja
Article

Abstract

A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.

Key words

Neuron models Synaptic plasticity Stochastic approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Anderson, T. W.: An introduction to multivariate statistical analysis. New York: Wiley 1958Google Scholar
  2. Cooper, L. N., Liberman, F., Oja, E.: A theory for the acquisition and loss of neuron specificity in visual cortex. Biol. Cyb. 33, 9–28 (1979)Google Scholar
  3. Hale, J. K.: Ordinary differential equations. New York: Wiley 1969Google Scholar
  4. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cyb. 43, 59–69 (1982)Google Scholar
  5. Kohonen, T., Lehtiö, P., Oja, E.: Storage and processing of information in distributed associative memory systems. In: Hinton, G., Anderson, J. A. (eds.). Parallel models of associative memory, pp. 105–143. Hillsdale: Erlbaum 1981Google Scholar
  6. Kushner, H., Clark, D.: Stochastic approximation methods for constrained and unconstrained systems. New York: Springer 1978Google Scholar
  7. Ljung, L.: Analysis of recursive stochastic algorithms. IEEE Trans. Automatic Control AC-22, 551–575 (1977)Google Scholar
  8. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973)Google Scholar
  9. McCulloch, W. S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics 5, 115–133 (1943)Google Scholar
  10. Nass, M., Cooper, L. N.: A theory for the development of feature detecting cells in visual cortex. Biol. Cyb. 19, 1–18 (1975)Google Scholar
  11. Oja, E., Karhunen, J.: On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix. Helsinki University of Technology, Report TKK-F-A458 (1981)Google Scholar
  12. Perez, R., Glass, L., Shlaer, R. J.: Development of specificity in the cat visual cortex. J. Math. Biol. 1, 275–288 (1975)Google Scholar
  13. Stent, G. S.: A psychological mechanism for Hebb's postulate of learning. Proc. Natl. Acad. Sciences 70, 997–1001 (1973)Google Scholar
  14. Takeuchi, A., Amari, S.: Formation of topographic maps and columnar microstructures in nerve fields. Biol. Cyb. 35, 63–72 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Erkki Oja
    • 1
  1. 1.Institute of MathematicsUniversity of KuopioKuopio 10Finland

Personalised recommendations