Journal of Mathematical Biology

, Volume 25, Issue 6, pp 653–675 | Cite as

Dissection of a model for neuronal parabolic bursting

  • John Rinzel
  • Young Seek Lee


We have obtained new insight into the mechanisms for bursting in a class of theoretical models. We study Plant's model [24] for Aplysia R-15 to illustrate our view of these so-called “parabolic” bursters, which are characterized by low spike frequency at the beginning and end of a burst. By identifying and analyzing the fast and slow processes we show how they interact mutually to generate spike activity and the slow wave which underlies the burst pattern. Our treatment is essentially the first step of a singular perturbation approach presented from a geometrical viewpoint and carried out numerically with AUTO [12]. We determine the solution sets (steady state and oscillatory) of the fast subsystem with the slow variables treated as parameters. These solutions form the slow manifold over which the slow dynamics then define a burst trajectory. During the silent phase of a burst, the solution trajectory lies approximately on the steady state branch of the slow manifold and during the active phase of spiking, the trajectory sweeps through the oscillation branch. The parabolic nature of bursting arises from the (degenerate) homoclinic transition between the oscillatory branch and the steady state branch. We show that, for some parameter values, the trajectory remains strictly on the steady state branch (to produce a resting steady state or a pure slow wave without spike activity) or strictly in the oscillatory branch (continuous spike activity without silent phases). Plant's model has two slow variables: a calcium conductance and the intracellular free calcium concentration, which activates a potassium conductance. We also show how bursting arises from an alternative mechanism in which calcium inactivates the calcium current and the potassium conductance is insensitive to calcium. These and other biophysical interpretations are discussed.

Key words

Neuronal modeling Bursting-Pacemaker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W. B.: Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15. J. Physiol. 360, 51–68 (1985)Google Scholar
  2. 2.
    Adams, W. B., Benson, J. A.: The generation and modulation of endogeneous rhythmicity in the Aplysia bursting pacemaker neurone R15. Prog. Biophys. Mol. Biol. 46, 1–49 (1985).Google Scholar
  3. 3.
    Adams, W. B., Levitan, I. V.: Voltage and ion dependences of the slow currents which mediate bursting in Aplysia neurone R15. J. Physiol. 360, 69–93 (1985)Google Scholar
  4. 4.
    Argemi, J., Gola, M., Chagneux, H.: Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells —I. Reduced systems. Bull. Math. Biol. 41, 665–686 (1979)Google Scholar
  5. 5.
    Argemi, J., Gola, M., Chagneux, H.: Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells —II. Complete system. Bull. Math. Biol. 42, 221–238 (1980)Google Scholar
  6. 6.
    Argemi, J., Chagneux, H., Ducreux, C., Gola, M.: Qualitative study of a dynamical system for metrazol-induced paroxysmal depolarization shifts. Bull. Math. Biol. 46, 903–922 (1984)Google Scholar
  7. 7.
    Barker, J. L., Smith, T. G.: Electrophysiological studies of molluscan neurons generating bursting pacemaker activity. In: Chalazonitis, N., Basson, M. (eds.) Abnormal neuronal discharges, pp. 359–387. New York: Raven 1978Google Scholar
  8. 8.
    Both, R., Finger, W., Chaplain, R. A.: Model predictions of the ionic mechanisms underlying the beating and bursting pacemaker characteristics of molluscan neurons. Biol. Cybernetics 23, 1–11 (1976)Google Scholar
  9. 9.
    Carpenter, G. A.: Bursting phenomena in excitable membranes. SIAM J. Appl. Math. 36, 334–372 (1979)Google Scholar
  10. 10.
    Chay, T. R.: Abnormal discharges and chaos in a neuronal model system. Biol. Cybern. 50, 301–311 (1984)Google Scholar
  11. 11.
    Chay, T. R., Keizer, J.: Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190 (1983)Google Scholar
  12. 12.
    Doedel, E. J.: AUTO: A program for the automatic bifurcation and analysis of autonomous systems. (Proc. 10th Manitoba Conf. on Num. Math, and Comput, Winnipeg, Canada) Cong. Num. 30, 265–284 (1981)Google Scholar
  13. 13.
    Eckert, R., Chad, J. E.: Inactivation of Ca channels. Prog. Biophys. Mol. Biol. 44, 215–267 (1984)Google Scholar
  14. 14.
    Gola, M.: Electrical properties of bursting pacemaker neurones. In: Neurobiology of invertebrates. Gastropoda Brain., pp. 381–423. Tihany 1975Google Scholar
  15. 15.
    Hindmarsh, A. C.: Ordinary differential equations systems solver. Report UCID-30001. Lawrence Livermore Lab. Livermore, CA (1974)Google Scholar
  16. 16.
    Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117, 500–544 (1952)Google Scholar
  17. 17.
    Honerkamp, J., Mutschler, G., Seitz, R.: Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol. 47, 1–21 (1985)Google Scholar
  18. 18.
    Keener, J. P.: Infinite period bifurcation and global bifurcation branches. SIAM J. Appl. Math. 41, 127–144 (1981)Google Scholar
  19. 19.
    Kopell, N., Ermentrout, G. B.: Subcellular oscillations and bursting. Math. Biosci. 78, 265–291 (1986)Google Scholar
  20. 20.
    Kopell, N., Howard, L. N.: Bifurcations and trajectories joining critical points. Adv. Math. 18, 306–358 (1975)Google Scholar
  21. 21.
    Kramer, R. H., Zucker, R. S.: Calcium-dependent inward current in Aplysia bursting pace-maker neurones. J. Physiol. 362, 107–130 (1985)Google Scholar
  22. 22.
    Kramer, R. H., Zucker, R. S.: Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones. J. Physiol. 362, 131–160 (1985)Google Scholar
  23. 23.
    Mironov, S. L.: Theoretical model of slow-wave membrane potential oscillations in molluscan neurons. Neuroscience 10, 899–905 (1983)Google Scholar
  24. 24.
    Plant, R. E.: Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol. 11, 15–32 (1981)Google Scholar
  25. 25.
    Plant, R. E., Kim, M.: On the mechanism underlying bursting in the Aplysia abdominal ganglion R-15 cell. Math. Biosci. 26, 357–375 (1975)Google Scholar
  26. 26.
    Plant, R. E., Kim, M.: Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys. J. 16, 227–244 (1976)Google Scholar
  27. 27.
    Rinzel, J.: On repetitive activity in nerve. Fed. Proc. 37, 2793–2802 (1978)Google Scholar
  28. 28.
    Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Sleeman, B. D., Jones, D. S. (eds.) Ordinary and partial differential equations. (Lect. Notes Math., vol. 1151, pp. 304–316). Berlin Heidelberg New York: Springer 1985Google Scholar
  29. 29.
    Rinzel, J., Lee, Y. S.: On different mechanisms for membrane potential bursting. In: Othmer, H. G. (ed.) Nonlinear oscillations in biology and chemistry. (Lect. Notes Biomath., vol. 66, pp. 19–83). Berlin Heidelberg New York: Springer 1986Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • John Rinzel
    • 1
  • Young Seek Lee
    • 1
  1. 1.Mathematical Research BranchNIDDK, National Institutes of HealthBethesdaUSA

Personalised recommendations