Journal of Mathematical Biology

, Volume 15, Issue 2, pp 249–258 | Cite as

Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy

  • Gerhard West
  • Michael H. Brill


Necessary and sufficient spectral conditions are presented for Von Kries chromatic adaptation to give color constancy. Von-Kries-invariant reflectance spectra are computed for illuminant spectral power distributions that are arbitrary linear combinations of the first three daylight phases. Experiments are suggested to test models of color constancy using computed spectra (either exact or approximate) within the illuminant-invariant framework.

Key words

Color perception Color constancy Chromatic adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, N. F.: Color characteristics of artists' pigments. J. Opt. Soc. Amer. 29, 208–214 (1939)Google Scholar
  2. Brill, M. H.: A device performing illuminant-invariant assessment of chromatic relations. J. Theoret. Biology 71, 473–478 (1978)Google Scholar
  3. Brill, M. H.: Computer simulation of object-color recognizers. J. Opt. Soc. Amer. 69, 1405a (1979) (A more detailed discussion appears in the Massachusetts Institute of Technology Research Laboratory of Electronics Progress Reports No. 122, 214–221, 1980)Google Scholar
  4. Brill, M. H., West, G.: Contributions to the theory of invariance of color under the condition of varying illumination. J. Math. Biol. 11, 337–350 (1981a)Google Scholar
  5. Brill, M. H., West, G.: Spectral conditions for color constancy via Von Kries adaptation. AIC COLOR 81, Berlin, 21–25 September 1981: Proceedings of the 4th Congress of the International Color Association (1981b)Google Scholar
  6. Helson, H.: Fundamental problems in color vision. I. The principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. J. Exper. Psychol. 23, 429–476 (1938)Google Scholar
  7. Judd, D. B.: Hue, saturation, and lightness of surface colors with chromatic illumination. J. Opt. Soc. Amer. 30, 2–32 (1940)Google Scholar
  8. Judd, D. B., MacAdam, D. L., Wyszecki, G.: Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Amer. 54, 1031–1040, 1382 (1964). Commission Internationale de l'Eclairage, Colorimetry. Colorimétrie. Farbmessung. Publ. CIE No. 15 (1971)Google Scholar
  9. Land, E. H., McCann, J. J.: Lightness and retinex theory. J. Opt. Soc. Amer. 61, 1–11 (1971)Google Scholar
  10. McCann, J. J., McKee, S. P., Taylor, T. H.: Quantitative studies in retinex theory. Vision Research 16, 445–458 (1976)Google Scholar
  11. Nayatani, Y., Takahama, K., Sobagaki, H.: Formulation of a nonlinear model of chromatic adaptation. Color Res. Appl. 6, 167–171 (1981)Google Scholar
  12. Richards, W., Parks, E.: Model for color conversion. J. Opt. Soc. Amer. 61, 971–976 (1971)Google Scholar
  13. Smith, V. C., Pokorny, J.: Spectral sensitivity of color-blind observers and the cone photopigments. Vision Res. 12, 2059–2071 (1972)Google Scholar
  14. Smith, V. C., Pokorny, J.: Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 15, 161–171 (1975)Google Scholar
  15. West, G.: Color perception and the limits of color constancy. J. Math. Biol. 8, 47–53 (1979)Google Scholar
  16. Wyszecki, G., Stiles, W. S.: Color science. New York: John Wiley and Sons 1967Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Gerhard West
    • 1
  • Michael H. Brill
    • 2
  1. 1.Bergisch Gladbach 2Germany
  2. 2.JAYCORAlexandriaUSA

Personalised recommendations