Human Genetics

, Volume 61, Issue 2, pp 145–147 | Cite as

Complete moles have paternal chromosomes but maternal mitochondrial DNA

  • Douglas C. Wallace
  • Urvashi Surti
  • Camellia W. Adams
  • A. E. Szulman
Original Investigations


Complete hydatidiform moles contain only paternal chromosomes. To learn more of their origin, we used restriction endonuclease site polymorphisms found in the parental mitochondrial DNAs to demonstrate that moles contain exclusively maternal mitochondrial DNA. Thus, moles must arise from the fusion of one or two sperm with a mature but anucleate ovum.


Internal Medicine Restriction Endonuclease Metabolic Disease Restriction Endonuclease Site Hydatidiform Mole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson S, Bankier AT, Barrell BG, Bruijn MHL de, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  2. Bieber FR, Nance WE, Morton CC, Brown JA, Redwine FO (1981) Genetic studies of an acardiac monster: evidence of polar body twinning in man. Science 213:775–777Google Scholar
  3. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3: 2303–2308Google Scholar
  4. Case JT, Wallace DC (1981) Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts. Somatic Cell Genet 7:103–108Google Scholar
  5. Denaro M, Blanc H, Johnson MJ, Chen KH, Wilmsen E, Cavalli-Sforza LL, Wallace DC (1981) Ethnic variation in Hpa I endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl Acad Sci USA 78:5768–5772Google Scholar
  6. Giles RE, Blanc H, Cann HM, Wallace DC (1980a) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77: 6715–6719Google Scholar
  7. Giles RE, Stroynowski I, Wallace DC (1980b) Characterization of mitochondrial DNA in chloramphenicol-resistant interspecific hybrids and a cybrid. Somatic Cell Genet 6:543–554Google Scholar
  8. Gresson RAR (1940) Presence of the sperm middle-piece in the fertilized egg of the mouse (Mus musculus). Nature 145:425Google Scholar
  9. Gresson RAR (1941) A study of the cytoplasmic inclusions during maturation, fertilization and the first cleavage division of the egg of the mouse. J Microscop Sci 83:35–60Google Scholar
  10. Jacobs PA, Wilson CM, Sprenkle JA, Rosenshein NB, Migeon BR (1980) Mechanism of origin of complete hydatidiform moles. Nature 286:714–716Google Scholar
  11. Kajii T, Ohama K (1977) Androgenetic origin of hydatidiform mole. Nature 268:633–634Google Scholar
  12. Ohama K, Kajii T, Okamoto E, Fukuda Y, Imaizumi K, Tsukahara M, Kobayashi K, Hagiwara K (1981) Dispermic origin of XY hydatidiform moles. Nature 292:551–552Google Scholar
  13. Pattillo RA, Sasaki S, Katayama KP, Roesler M, Mattingly RF (1981) Genesis of 46,XY hydatidiform mole. Am J Obstet Gynecol 141: 104–105Google Scholar
  14. Ringertz NR, Savage RE (1976) Cell hybrids. Academic Press, New YorkGoogle Scholar
  15. Shipman C Jr, Smith SH, Drach JC (1972) Selective inhibition of nuclear DNA synthesis by 9-β-d-arabinofuranosyl adenine in rat cells transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 69:1753–1757Google Scholar
  16. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  17. Surti U, Szulman AE, O'Brien S (1979) Complete (classic) hydatidiform mole with 46,XY karyotype of paternal origin. Hum Genet 51: 153–155Google Scholar
  18. Surti U, Szulman AE, O'Brien S (1982) Dispermic origin and clinical outcome of three complete hydatidiform moles with 46,XY karyotype. Am J Obstet Gynecol (Accepted for publication)Google Scholar
  19. Szulman AE, Surti U (1978a) The syndromes of hydatidiform mole II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol 132:20–27Google Scholar
  20. Szulman AE, Surti U (1978b) The syndromes of hydatidiform mole I. Cytogenetic and morphologic correlations. Am J Obstet Gynecol 131:665–671Google Scholar
  21. Wallace DC, Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells. Mol Cell Biol 1:697–710Google Scholar
  22. Wallace DC, Bunn CL, Eisenstadt JM (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol 67:174–188Google Scholar
  23. Wallace DC, Bunn CL, Eisenstadt JM (1977) Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells II: fusions with human cell lines. Somatic Cell Genet 3:93–119Google Scholar
  24. Yamashita K, Wake N, Araki T, Ichinoe K Kuroda M (1981) A further HLA study of hydatidiform moles. Gynecol Oncol 11:23–28Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Douglas C. Wallace
    • 1
  • Urvashi Surti
    • 2
  • Camellia W. Adams
    • 1
  • A. E. Szulman
    • 2
  1. 1.Department of Genetics, School of MedicineStanford UniversityStanfordUSA
  2. 2.Department of PathologyMagee-Womens HospitalPittsburghUSA

Personalised recommendations