Advertisement

Human Genetics

, Volume 70, Issue 2, pp 148–156 | Cite as

Isolation of probes detecting restriction fragment length polymorphisms from X chromosome-specific libraries: potential use for diagnosis of Duchenne muscular dystrophy

  • M. H. Hofker
  • M. C. Wapenaar
  • Nicole Goor
  • E. Bakker
  • G. -J. B. van Ommen
  • P. L. Pearson
Original Investigations

Summary

We have isolated 23 human X chromosome-specific DNA fragments from λ libraries, prepared from flow-sorted X chromosomes. To increase diagnostic potential for X-linked genetic disorders, including Duchenne muscular dystrophy (DMD), the fragments were tested for restriction fragment length polymorphisms (RFLPs) with six restriction enzymes. All fragments were regionally mapped to segments of the X chromosome with a panel of somatic cell hybrids and with human cell lines carrying unbalanced chromosomal abnormalities. Two of the isolated probes detected a high frequency RFLP. One, 754, maps between Xp11.3 and Xp21 and detects a PstI polymorphism with an allele frequency of 0.38. The other, 782, maps between Xp22.2 and Xp22.3 and reveals an EcoRI polymorphism with an allele frequency of 0.40. According to a pilot linkage study of families at risk for Duchenne muscular dystrophy, 754 gives a maximum Lod score of 7.6 at a recombination fraction of 0.03. Probe 782 lies telomeric to DMD with a maximum Lod score of 2.2 at a recombination fraction of 0.17. Using our X-chromosomal probes and a set of autosomal probes, isolated and examined in an identical way, we found a significantly lower RFLP frequency for the X chromosome as compared to the autosomes.

Keywords

Allele Frequency Restriction Fragment Length Polymorphism Muscular Dystrophy Chromosomal Abnormality Duchenne Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge J, Kunkel L, Bruns G, Tantravahi U, Lalande M, Brewster T, Moreau E, Wilson M, Bromley W, Roderick T, Latt SA (1984) A strategy to reveal high frequency RFLPs along the human X chromosome. Am J Hum Genet 36:546–564PubMedPubMedCentralGoogle Scholar
  2. Baas F, Bikker H, van Ommen GJB, de Vijlder JJM (1984) Unusual scarcity of restriction site polymorphism in the human thyroglobulin gene. A linkage study suggesting autosomal dominance of a defective thyroglobulin allele. Hum Genet 67:301–305CrossRefGoogle Scholar
  3. Bakker E, Wieacker P, Beverstock GC, Pearson PL (1983) Recombinant DNA techniques for mapping the human X chromosome. Clin Genet 23:225Google Scholar
  4. Barker D, Schäfer M, White R (1984) Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 36:131–138CrossRefGoogle Scholar
  5. Benton WD, Davis RW (1977) Screening λ gt recombinant clones by hybridization to single plaques in situ. Science 196:180–182CrossRefGoogle Scholar
  6. Bhattacharya SS, Wright AF, Clayton JF, Price WH, Phillips CI, McKeown CME, Jay M, Bird AC, Pearson PL, Southern EM, Evans HY (1984) Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature 309:253–255CrossRefGoogle Scholar
  7. Botstein D, White RL, Skolnick M, Davis RV (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  8. Cavenee W, Leach R, Mohandas T, Pearson PL, White R (1984) Isolation and regional localization of DNA segments revealing polymorphic loci from human chromosome 13. Am J Hum Genet 36:10–24PubMedPubMedCentralGoogle Scholar
  9. Cooper DN, Schmidtke J (1984) DNA restriction fragment length polymorphisms and heterozygosity in the human genome. Hum Genet 66:1–16CrossRefGoogle Scholar
  10. Danieli GA, Barbujani G (1984) Duchenne muscular dystrophy. Frequency of sporadic cases. Hum Genet 67:252–256CrossRefGoogle Scholar
  11. Davies KE, Young B, Elles R, Hill M, Williamson R (1981) Cloning of a representative genomic library of the human X chromosome after sorting by flow cytometry. Nature 293:374–381CrossRefGoogle Scholar
  12. Davies KE, Pearson PL, Harper PS, Murray JM, O'Brien T, Sarfarazi M, Williamson R (1983) Genetic analysis of the short arm of the X chromosome defined by two random cloned DNA sequences flanking Duchenne muscular dystrophy. Nucleic Acids Res 11:2303–2311CrossRefGoogle Scholar
  13. Drayna D, Davies K, Hartley D, Mandel JL, Camerino G, Williamson R, White R (1984) Genetic mapping of the human X chromosome by using restriction fragment length polymorphisms. Proc Natl Acad Sci USA 81:2836–2839CrossRefGoogle Scholar
  14. Francke U, Felsenstein J, Gartler SM, Migeon BR, Dancis J, Seegmiller JE, Bakay F, Nyhan WL (1976) The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease. Am J Hum Genet 28:123–137PubMedPubMedCentralGoogle Scholar
  15. Francke U, Ochs HD, de Martinville B, Giacalone J, Lindgren V, Disteche C, Pagon RA, Hofker MH, van Ommen G-JB, Pearson PL, Wedgwood RJ (1985) Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa and McLeod syndrome. Am J Hum Genet (in press)Google Scholar
  16. Gianelli F, Choo KH, Rees DJG, Boyd I, Rizza CR, Brownlee GG (1983) Gene deletions in patients with haemophilia B and anti-factor IX antibodies. Nature 303:181–182CrossRefGoogle Scholar
  17. Gray PW, Goeddel DV (1982) Structure of the human immune interferon gene. Nature 298:859–863CrossRefGoogle Scholar
  18. Greenstein RM, Reardon MP, Chan TS, Middleton AB, Mulivor RA, Green AE, Coriell LL (1980) An (X;11) translocation in a girl with Duchenne muscular dystrophy. Cytogenet Cell Genet 27:268CrossRefGoogle Scholar
  19. Haldane JBS (1947) The mutation rate of the gene for hemophilia, and its segregation ratios in males and females. Ann Eugen (London) 13:262–271CrossRefGoogle Scholar
  20. Herva R, Kaluzewski B, de la Chapelle A (1979) Inherited del(Xp) with minimal clinical consequences: With a note on the location of genes controlling phenotypic features. Am J Med Genet 3:43–58CrossRefGoogle Scholar
  21. Jeffreys AT (1979) DNA sequence variants in the Gγ, Aγ, δ and β globin genes of man. Cell 18:1–10CrossRefGoogle Scholar
  22. Kingston HM, Thomas NST, Pearson PL, Sarfarazi M, Harper PS (1983) Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X-chromosome. J Med Genet 20:255–258CrossRefGoogle Scholar
  23. Kunkel LM, Tantravali U, Eisenhard M, Latt SA (1982) Regional localization on the human X of DNA sequences cloned from flow sorted chromosomes. Nucleic Acids Res 10:1557–1561CrossRefGoogle Scholar
  24. Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 34:842–845PubMedPubMedCentralGoogle Scholar
  25. Lindenbaum RHM, Clarke G, Patel C, Moncrieff M, Hughes JT (1979) Muscular dystrophy in an X;1 translocation female suggests that Duchenne locus is on X chromosome short arm. J Med Genet 16:389–392CrossRefGoogle Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning (A laboratory manual). Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. Miller G, Lisco H, Stitt D (1971) Establishment of cell lines from normal adult human blood leucocytes by exposure to Epstein Barr virus and neutralization by human sera with Epstein Barr virus antibody. Proc Soc Exp Biol Med 137:1459CrossRefGoogle Scholar
  28. Murray JM, Demopulos CM, Lawn RM, Motulsky AG (1983) Molecular genetics of human serum albumin: Restriction enzyme fragment length polymorphisms and analbuminemia. Proc Natl Acad Sci USA 80:5951–5955CrossRefGoogle Scholar
  29. Murray JM, Davies KE, Harper PS, Meredith L, Mueller CR, Wiliamson R (1982) Linkage relationships of a cloned DNA sequence on the short arm of the X chromosome to Duchenne muscular dystrophy. Nature 300:69–71CrossRefGoogle Scholar
  30. Skolnick M, White R (1982) Strategies for detecting and characterizing restriction fragment length polymorphisms (RFLPs). Cytogenet Cell Genet 32:58–67CrossRefGoogle Scholar
  31. Van Ommen GJB, Arnberg AC, Baas F, Brocas H, Sterk A, Tegelaers WHH, Vassart G, de Vijlder JJM (1983) The human thyroglobulin gene contains two 15–17kb introns near its 3′-end. Nucleic Acids Res 11:2273–2285CrossRefGoogle Scholar
  32. Verellen-Dumoulin C, Freund M, de Meyer R, Laterre CH, Frederic J, Thompson MW, Markovic VD, Worton RG (1984) Expression of an X-linked muscular dystrophy in a female due to translocation involving Xp21 and non-random inactivation in the normal X chromosome. Hum Genet 67:115–119CrossRefGoogle Scholar
  33. Weening RS, Roos D, Loos JA (1974) Oxygen consumption of phagocytising cells in human leucocyte and granulocyte preparations: A comparative study. J Lab Clin Med 83:570–576PubMedGoogle Scholar
  34. Wieacker P, Davies K, Pearson PL, Ropers HH (1983a) Carrier detection in Duchenne muscular dystrophy by use of cloned DNA sequences. Lancet I:1325–1326CrossRefGoogle Scholar
  35. Wieacker P, Wiencker TF, Dallapicolla B, Bender K, Davies KE, Ropers HH (1983b) Linkage relationships between retinoschisis, Xg and a cloned DNA sequence from the distal short arm of the X chromosome. Hum Genet 64:143–145CrossRefGoogle Scholar
  36. Wieacker P, Davies K, Cooke H, Pearson PL, Williamson R, Bhattacharya S, Simmer J, Ropers HH (1984) Toward a complete linkage map of the human X chromosome: Regional assignment of 16 cloned single copy DNA sequences employing a panel of somatic cell hybrids. Am J Hum Genet 36:365–376Google Scholar
  37. Wienker TF, Wieacker P, Cooke HJ, Horn N, Ropers HH (1983) Evidence that the Menkes locus maps on proximal Xp. Hum Genet 65:72–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. H. Hofker
    • 1
  • M. C. Wapenaar
    • 1
  • Nicole Goor
    • 1
  • E. Bakker
    • 1
  • G. -J. B. van Ommen
    • 1
  • P. L. Pearson
    • 1
  1. 1.Department of Human Genetics, Sylvius LaboratoriesUniversity of LeidenThe Netherlands

Personalised recommendations