Advertisement

Plant Cell Reports

, Volume 7, Issue 1, pp 47–50 | Cite as

Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector

  • Willem J. Stiekema
  • Freek Heidekamp
  • Jeanine D. Louwerse
  • Harrie A. Verhoeven
  • Paul Dijkhuis
Article

Abstract

Tuber discs of Solanum tuberosum cv Bintje and Désirée were cocultivated with an Agrobacterium tumefaciens binary vector, carrying both the neomycine phosphotransferase and the E. coli β-glucuronidase gene fused to resp. the nopaline synthase and Cauliflower mosaic virus 35S promotor.

Inoculated tuber discs produce transgenic shoots in selective media containing kanamycin. The transgenic plants are phenotypically normal and contain the euploid number of chromosomes. Both the neomycin phosphotransferase as well as the β-glucuronidase gene are expressed conferring resp. kanamycin resistance and β-glucuronidase activity to the plants.

Keywords

Transgenic Plant Kanamycin Mosaic Virus Binary Vector Neomycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

GUS

β-glucuronidase

NPT

neomycin phosphotransferase

CaMV

Cauliflower Mosaic Virus

BAP

6-benzylaminopurine

GA3

gibberellic acid

NAA

naphthalineacetic acid

LB

Luria Broth

MU

methylumbelliferone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An G, Watson BD, Chiang CC (1986) Plant Phys. 81, 301–305Google Scholar
  2. Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Nature 321:446–449Google Scholar
  3. Bevan MW (1984) Nucl. Acids Res. 12:8711–8721Google Scholar
  4. Bokelmann GS, Roest S (1983) Z. Pflanzenphysiol. 109:259–265Google Scholar
  5. Bradford M (1976) Anal. Biochem. 72:248Google Scholar
  6. Comai L, Faccioti D, Hyatt WR, Thompson G, Rose RE, Stalker DM (1985) Nature 317:741–744Google Scholar
  7. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Nucl. Acids Res. 13:4777–4788Google Scholar
  8. Van Dun CMP, Bol JF, Van Vloten-Doting L (1987) in pressGoogle Scholar
  9. Eckes P, Rosahl S, Schell J, Willmitzer L (1986) Mol. Gen. Genet. 205:14–22Google Scholar
  10. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Koetzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Biotechnology 5:807–812Google Scholar
  11. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303:179–180Google Scholar
  12. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227:1229–1231Google Scholar
  13. Jones JDG, Dunsmuir P, Bedbrook J (1985) EMBO J 4:2411–2418Google Scholar
  14. McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch RB, Fraley RT, (1986) Plant Cell Reports 5:81–89Google Scholar
  15. Nagy F, Morelli G, Fraley RT, Rogers SG, Chua N-H (1985) EMBO J 4:3063–3068Google Scholar
  16. Ooms G, Burrell MM, Karp A, Bevan M, Hille J (1987) Theor. Appl. Genet. 73:744–750Google Scholar
  17. Palmer CE, Smith OE (1968) Nature 221:279–280Google Scholar
  18. Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B, Potrykus I (1984) EMBO J 3:2717–2722Google Scholar
  19. Peerbolte R, Leenhouts K, Hooykaas-Van Slogteren GMS, Hoge JHC, Wullems GJ, Schilperoort RA (1986) Plant Mol. Biol. 7:265–284Google Scholar
  20. Poulsen C, Fluhr R, Kauffman JM, Boutry M, Chua N-H (1986) Mol. Gen. Genet. 205:193–200Google Scholar
  21. Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Science 232:738–743Google Scholar
  22. Pua E-C, Mehra-Palta A, Nagy F, Chua N-H (1987) Biotechnology 5:815–817Google Scholar
  23. Roest S, Bokelmann GS (1976) Potato Res. 19:173–178Google Scholar
  24. Roest S, Bokelmann GS (1983) 6th Int. Protoplast Symp. Poster Proc.; pp 282–283Google Scholar
  25. Rogers Sg, Horsch RB, Fraley RT (1986) Methods in Enzymology 118:627–640Google Scholar
  26. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Science 233:478–481Google Scholar
  27. Sheikholeslam SN, Weeks DP (1987) Plant Mol. Biol. 8:291–298Google Scholar
  28. Shillito RD, Saul MW, Pazskowski J, Muller M, Potrykus I (1985) Biotechnology 3:1099–1103Google Scholar
  29. Simpson J, Van Montagu M, Herrera-Estrella L (1986) Science 233:34–38Google Scholar
  30. Sree Ramulu K, Dijkhuis P, Roest S (1984) Theor. Appl. Genet. 68:515–519Google Scholar
  31. Sree Ramulu K, Dijkhuis P, Hänisch ten Cate ChH, De Groot B (1985) Plant Science 41:69–78Google Scholar
  32. Sree Ramulu K (1986) Cell Culture and Smatic Cell Genetics of Plants, Vol 3, Plant Regeneration and Genetic Variability (Vasil IK, ed) Academic Press, NYGoogle Scholar
  33. Stockhaus J, Eckes P, Blau A, Schell J, Willmitzer L (1987) Nucl. Acids Res. 15:3479–3491Google Scholar
  34. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Nature 328:33–37Google Scholar
  35. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu, Schell J (1983) EMBO J 2:2143–2150Google Scholar
  36. Velten J, Schell J (1985) Nucl. Acids Res. 13:6981–6998Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Willem J. Stiekema
    • 1
  • Freek Heidekamp
    • 1
  • Jeanine D. Louwerse
    • 1
  • Harrie A. Verhoeven
    • 1
  • Paul Dijkhuis
    • 1
  1. 1.Research Institute ItalWageningenThe Netherlands

Personalised recommendations