Human Genetics

, Volume 48, Issue 3, pp 251–314 | Cite as

Chromosomal evolution in Primates: Tentative phylogeny from Microcebus murinus (Prosimian) to man

  • B. Dutrillaux
Review Articles


The karyotypes of more than 60 species of Primates are studied and compared, with the use of almost all existing banding techniques. There is a very close analogy of chromosome banding between the Simians studied and man. The quantitative or qualitative variations detected all involve the heterochromatin. It is very likely that all the euchromatin (nonvariable R and Q bands) is identical in all the species.

Approximately 70% of the bands are common to the Simians and to the Lemurs (Prosimians). In the remaining 30%, technical difficulties prevented a valuable comparison, but this does not exclude the possibility that a complete analogy may exist.

Thus, it is very likely that chromosomal evolutions of the Simians, and probably of all the Primates, has occurred without duplication or deficiency of the euchromatin.

Approximately 150 rearrangements could be identified and related to the human chromosomes. The types of rearrangements vary from one group (suborder, family, genus) to another. For instance, Robertsonian translocations are preponderant among the Lemuridae (44/57) but are nonexistent among the Pongidae. Chromosome fissions are very frequent among the Cercopithecidae (10/23), but were not found elsewhere, and pericentric inversions are preponderant in the evolution of Pongidae and man (17/28).

This suggests that the chromosomal evolution may be directed by the genic constitution (favouring the occurrence of a particular type of rearrangement, by enzymatic reaction), by the chromosomal morphology (the probability that Robertsonian translocations will be formed depends at least partially on the number of acrocentrics), and by the reproductive behaviour of the animals.

Reconstitution of the sequence of the chromosomal rearrangements allowed us to propose a fairly precise genealogy of many Primates, giving the positions of the Catarrhines, the Platyrrhines, and the Prosimians. It was also possible to reconstruct the karyotypes of ancestors that died out several dozen million years ago.

The possible role of chromosomal rearrangements in evolution is discussed. It appears necessary to consider different categories of rearrangements separately, depending on their behaviour. The ‘nonfavoured’ rearrangements, such as pericentric inversions, need to occur in an isolated small population for implanting, by an equivalent of genic derivation.

The ‘favoured’ rearrangements, e.g., Robertsonian translocations, may occur and diffuse in panmictic populations, and accumulate. Their role of gametic barrier could be much more progressive.

For discrimination between these two categories, it was necessary to differentiate the selective advantage or disadvantage of the rearrangement itself. It was not possible to show that chromosomal rearrangements play a direct role in modification of the phenotype by position effect.

Comparison of the rearrangements that have occurred during evolution and those detected in the human population shows a strong correlation for some of them. In particular, a large proportion of pericentric inversions can be regarded as reverse mutations, because they reproduce ancestral chromosomes.


Chromosomal Rearrangement Position Effect Selective Advantage Reproductive Behaviour Genic Derivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aurias, A., Prieur, M., Dutrillaux, B., Lejeune, J.: Systematical analysis of 95 translocations of autosomes. Hum. Genet. (in press, 1978)Google Scholar
  2. Bernirschke, K., Bogart, M. H.: Chromosomes of the tan-handed titi (Callicebus torquatus, Hoffmannsegg, 1807). Folia Primatol. (Basel) 25, 25- (1978)Google Scholar
  3. Bloom, S. E., Goodpasture, C.: An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum. Genet. 34, 199–206 (1976)Google Scholar
  4. Bobrow, M., Madan, K.: A comparison of chimpanzee and human chromosomes, using the Giemsa-11 and other chromosomes banding techniques. Cytogenet. Cell Genet. 12, 107–116 (1973)Google Scholar
  5. Capanna, E., Groop, A., Winkring, H., Noack, G., Civitelli, M. V.: Robertsonian metacentrics in the mouse. Chromosoma 58, 341–353 (1976)Google Scholar
  6. Caspersson, R., Zech, L., Johansson, C., Modest, E. J.: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30, 215–227 (1970)Google Scholar
  7. Chiarelli, B.: Karyological evolution in Primates and origin of the human karyotype. Atti Ass. Gen. Ital. 7, 284–285 (1962)Google Scholar
  8. Chu, E. H. Y., Bender, M. A.: Cytogenetics and evolution of primates. Ann. NY Acad. Sci. 102, 253–266 (1962)Google Scholar
  9. Dallapiccola, B., Mastroiacovo, P., Gandini, E.: Centric fission of chromosome no. 4 in the mother of two patients with trisomy 4p. Hum. Genet. 31, 121–125 (1976)Google Scholar
  10. Dutrillaux, B.: Les aberrations chromosomiques transmissibles. In: Journées Parisiennes de Pédiatrie, pp. 13–21. Paris: Flammarion, 1972Google Scholar
  11. Dutrillaux, B.: Nouveau système de marquage chromosomique: les bandes T. Chromosoma 41, 395–402 (1973)Google Scholar
  12. Dutrillaux, B.: Obtention de plusieurs marquages chromosomiques sur les mêmes préparations, après traitement par le BrdU. Humangenetik 30, 297–306 (1975a)Google Scholar
  13. Dutrillaux, B.: Sur la nature et l'origine des chromosomes humains. Paris: Expansion 1975bGoogle Scholar
  14. Dutrillaux, B.: Study of human X chromosomes with the 5-BrdU-acridine orange technique. Application to X chromosome pathology. Chromosomes today, Vol. 5, pp 395–407. Amsterdam: Elsevier/North-Holland Biomedical Press 1976Google Scholar
  15. Dutrillaux, B.: Advances in Cytogenetics. In: J. W. Lillefield, J. de Grouchy (eds.), pp. 427–429. Amsterdam-Oxford: Excerpta Medica, 1977Google Scholar
  16. Dutrillaux, B., Lejeune, J.: Sur une nouvelle technique d'analyse du caryotype humain. C. R. Acad. Sci. [D] (Paris) 272, 2638–2640 (1971)Google Scholar
  17. Dutrillaux, B., Rumpler, Y.: Chromosomal evolution in Malagasy lemurs. II. Meiosis in intra-and interspecific hybrids in the genus Lemur. Cytogenet. Cell Genet. 18, 197–211 (1977)Google Scholar
  18. Dutrillaux, B., Grouchy, J. de, Finaz, C., Lejeune, J.: Mise en évidence de la structure fine des chromosomes humains par digestion enzymatique (pronase en particulier). C.R. Acad. Sci. [D] (Paris) 273, 587–588 (1971)Google Scholar
  19. Dutrillaux, B., Laurent, C., Couturier, J., Lejeune, J.: Coloration par l'acridine orange de chromosomes préalablement traités par le 5-bromodéoxyuridine (BudR). C.R. Acad. Sci. [D] (Paris) 276, 3179–3181 (1973a)Google Scholar
  20. Dutrillaux, B., Réthoré, M. O., Prieur, M., Lejeune, J.: Analyse de la structure fine des chromosomes du Gorille (Gorilla-gorilla). Comparaison avec Homo sapiens et Pan troglodytes. Humangenetik 20, 347–354 (1973b)Google Scholar
  21. Dutrillaux, B., Laurent, C., Gilgenkrantz, S., Frederic, J., Carpentier, S., Couturier, J., Lejeune, J.: Les translocations du chromosome X. Analyse après traitement par le BudR et coloration par l'acridine orange. Helv. paediat. Acta [Suppl.] 34, 19–31 (1974)Google Scholar
  22. Dutrillaux, B., Réthoré, M. O., Lejeune, J.: Analyse du caryotype de Pan paniscus. Comparaison avec les autres Pongidae et l'Homme. Humangenetik 28, 113–119 (1975a)Google Scholar
  23. Dutrillaux, B., Réthoré, M. O., Lejeune, J.: Comparaison du caryotype de l'orang outang à celui de l'homme, du chimpanzé et du gorille. Ann. Genet. (Paris) 18, 153–161 (1975b)Google Scholar
  24. Dutrillaux, B., Réthoré, M. O., Aurias, A., Goustard, M.: Analyse du caryotype de deux espèces de gibbons (Hylobates lar et Hylobates concolor). Cytogenet. Cell Genet. 15, 81–91 (1975c)Google Scholar
  25. Dutrillaux, B., Couturier, J., Richer, C. L., Viegas-Péquignot, E. Sequence of DNA replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment. Chromosoma 58, 51–61 (1976)Google Scholar
  26. Dutrillaux, B., Aurias, A., Couturier, J., Croquette, E., Viegas-Péquignot, E.: Multiple telomeric fusions and chain configurations in human somatic chromosomes. In: Chromosomes today, Vol. 6, Chapelle, A. de la, Sorsa, M. (eds.), pp. 37–44. Amsterdam: Elsevier/North-Holland Biomedical Press 1977Google Scholar
  27. Dutrillaux, B., Viegas-Péquignot, E., Dubos, C., Masse, R.: Complete or almost complete analogy of chromosome banding between the baboon (Papio papio) and man. Hum. Genet. 43, 37–46 (1978a)Google Scholar
  28. Dutrillaux, B., Viegas-Péquignot, E., Couturier, J., Chauvier, G.: Identity of euchromatic bands from man to Cercopithecidae (Cercopithecus aethiops, Cercopithecus sabaeus, Erythrocebus patas, Miopithecus talapoin). Hum. Genet. (in press, 1978b)Google Scholar
  29. Dutrillaux, B., Couturier, J., Viegas-Péquignot, E., Chauvier, G., Trebbau, P.: Présence d'une hétérochromatine abondante dans le caryotype de deux Cebus: C. capucinus and C. nigricittatus. Ann. Genet. (Paris) 21, 142–148 (1978c)Google Scholar
  30. Dutrillaux, B., Croquette, M. F., Viegas-Péquignot, E., Aurias, A., Coget, J., Couturier, J., Lejeune, J.: Human chromosomes chains and rings. A preliminary note on end-to-end fusions. Cytogenet. Cell Genet. 20, 70–77 (1978d)Google Scholar
  31. Dutrillaux, B., Biémont, M. C., Viegas-Péquignot, E., Laurent, C.: Comparison of the karyotypes of four Cercopithecidae: Papio papio, P. anubis, Macaca mulatta and M. fascicularis. Cytogenet. Cell Genet. 23, 77–83 (1979)Google Scholar
  32. Egozcue, J., Caballin, M. R., Goday, C.: Banding patterns of the chromosomes of man and the chimpanzee. Humangenetik 18, 77–80 (1973a)Google Scholar
  33. Egozcue, J., Aragonés, J., Caballin, M. R., Goday, C.: Banding patterns of the chromosomes of man and gorilla. Ann. Genet. (Paris), 16, 207–210, (1973b)Google Scholar
  34. Ferguson-Smith M. A.: Inherited constriction fragility of chromosome 2. Ann. Genet. (Paris) 16, 35–38 (1973)Google Scholar
  35. Finaz, C.: Comparaison des cartes géniques des primates: homme, chimpanzé, orang-outan, babouin et cercopithèque. Thesis doct. ès Sci., Paris, 1978Google Scholar
  36. Finaz, C., Nguyen van Cong, Cochet, C., Frezal, J., Grouchy, J. de: Fifty-million-year evolution of chromosome 1 in the primates: evidence from banding and gene mapping. Cytogenet. Cell Genet. 18, 160–164 (1977)Google Scholar
  37. Ford, C. E., Madan, K.: Branched chromosomes: an alternative to the hypothesis of selective endoreduplication. In: Chromosome identification—Technique and applications in biology and medicine, Caspersson, T., Zech, L. (eds.). Stockholm, New York, London: Nobel Foundation and Academic Press 1973Google Scholar
  38. Fredga, K., Nawrin, J.: Karyotype variability in Sorex araneus. 1. Insectivora, Mammalia. In: Chromosomes today, Vol. 6. Chapelle, A. de la, Sorsa, M. (eds.), pp 153–161. Amsterdam: Elsevier/North-Holland Biomedical Press 1977Google Scholar
  39. Gagné, R., Laberge, C.: Specific cytological recognition of the heterochromatic segment of number 9 chromosome in Man. Exp. Cell Res. 73, 239–241 (1972)Google Scholar
  40. Garver, J. J., Estop, A., Pearson, P. L., Dijkman, T. M., Wijnen, L. M. M., Meera Khan, P. Comparative gene mapping in the Pongidea and Cercopithecoidea. In: Chromosomes today, Vol. 6 Chapelle, A. de la, Sorsa, M. (eds.), pp. 191–199. Amsterdam: Elsevier/North-Holland Biomedical Press 1977Google Scholar
  41. Gosden, J. R., Mitchell, A. R., Seuanez, H. N., Gosden, C. M.: The distribution complementary to human satellite I, II, and IV in the chromosomes of chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus). Chromosoma 63, 253–271 (1977)Google Scholar
  42. Grouchy, J. de: Cancer and the evolution of species: a ransom. Biomedicine 18, 6–8 (1973)Google Scholar
  43. Grouchy, J. de: De la naissance des espèces aux aberrations de la vie. R. Laffont 1978Google Scholar
  44. Grouchy, J. de, Turleau, C., Roubin, M., Klein, M.: Evolution caryotypique de l'homme et du chimpanzé: étude comparative des topographies de bandes après dénaturation ménagée. Ann. Genet. (Paris) 15, 79–84 (1972)Google Scholar
  45. Grouchy, J. de, Finaz, C., Nguyen van Cong: Comparative banding and gene mapping in primates evolution. Evolution of chromosome 1 during fifty million years. In: Chromosomes today, Vol. 6. Chapelle, A. de la, Sorsa, M. (eds.), pp 183–190. Amsterdam: Elsevier/North-Holland Biomedical Press 1977Google Scholar
  46. Hamerton, J. L.: Robertsonian translocations in man: evidence for prezygotic selection. Cytogenetics 7, 260–276 (1968)Google Scholar
  47. Hamerton, J. L., Klinger, H. P., Mutton, D. E., Lang, E. M.: The somatic chromosomes of the Hominoidea. Cytogenetics 2, 240–263 (1963)Google Scholar
  48. Hamerton, J. L., Canning, N., Ray, M., Smith, S.: A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin. Genet. 8, 223–243 (1975)Google Scholar
  49. Hansen, S.: A case of centric fission in man. Humangenetik 26, 257–259 (1975)Google Scholar
  50. Henderson, A. S., Warburton, D., Atwood, K. C.: Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA 69, 3394–3398 (1972)Google Scholar
  51. Henderson, A. S., Warburton, D., Atwood, K. C.: Localisation of rDNA in the chromosome complement of the Rhesus (Macaca mulutta). Chromosoma 44, 367–370 (1974)Google Scholar
  52. Henderson, A. S., Warburton, D., Megraw-Ripley, S., Atwood, K. C.: The chromosomal location of rDNA in selected lower primates. Cytogenet. Cell Genet. 19, 281–302 (1977)Google Scholar
  53. Hsu, T. C., Bernirschke, K.: Mammalian chromosome atlas. New York: Springer 1967–1977Google Scholar
  54. Jones, K. W: Annotation: satellite DNA. J. Med. Genet. 10, 273–276 (1973)Google Scholar
  55. Jones, K. W.: Repetitive DNA sequences in animals, particularly primates. In: Chromosomes today, Vol. 5. Pearson, P. L., Lewis, K. R. (eds.), pp. 305–313, New York: Halsted 1974Google Scholar
  56. Jones, K. W.: Repetitive DNA and primate evolution: In: Molecular structure of human chromosomes. Yunis, J. J. (ed.), pp. 295–326. New York, San Francisco, London: Academic Press 1977Google Scholar
  57. Jones, K. W., Corneo, G.: Location of satellite and homogeneous DNA sequences on human chromosomes. Nature 233, 238–239 (1971)Google Scholar
  58. Jones, K. W., Prosser, J., Corneo, G., Ginelli, E., Bobrow, M.: Satellite DNA constitutive heterochromatin and human evolution. In: Modern aspects of cytogenetics: constitutive heterochromatin in man, Pfeiffer, F. K. (ed.), pp. 45–61. (Symp. Med. Hoechst, no. 6). Stuttgart: Schattauer 1972Google Scholar
  59. Klinger, H. P.: The somatic chromosomes of some primates (Tupaia glis, Nycticebus coucang, Tarsius bancanus, Cercocebus aterrimus, Symphalangus syndactylus). Cytogenetics 2, 140–151 (1963)Google Scholar
  60. Lejeune, J.: Sur les mécanismes de la spéciation. C.R. Soc. Biol. (Paris) 169, 828–845 (1975)Google Scholar
  61. Lejeune, J., Dutrillaux, B., Lafourcade, J., Berger, R., Abonyi, D., Réthoré, M. O.: Endoreduplication sélective du bras long du chromosome 2 chez une femme et sa fille. C.R. Acad. Sci. [D] (Paris) 266, 24–26 (1968)Google Scholar
  62. Lejeune, J., Dutrillaux, B., Grouchy, J. de: Reciprocal translocations in human population. A preliminary analysis. In: Population cytogenetics. Edinburgh: University Press 1970Google Scholar
  63. Lejeune, J., Dutrillaux, B., Réthoré, M. O., Prieur, M.: Comparaison de la structure fine des chromatides d'Homo sapiens et de Pan troglodytes. Chromosoma 43, 423–444 (1973)Google Scholar
  64. Lin, C. C., Chiarelli, B., Boer, L. E. M. de, Cohen, M. M.: A comparison of the fluorescent karyotype of the chimpanzee (Pan troglodytes) and man. J. Hum. Evol. 2, 311–321 (1973)Google Scholar
  65. Miller, D. A., Firschein, I. L., Dev, V. G., Tantravahi, R., Miller, O. J.: The Gorilla karyotype: chromosome lengths and polymorphisms. Cytogenet. Cell Genet. 13, 536–550 (1974)Google Scholar
  66. Miller, C. K., Miller, D. A., Miller, O. J., Tantravahi, R., Reese, R. T.: Banded chromosomes of the owl monkey, Aotus trivirgatus. Cytogenet. Cell Genet. 19, 215–226 (1977)Google Scholar
  67. Mitchell, A. R., Seuanez, H. N., Lawrie, S. S., Martin, D. E., Gosden, J. R.: The location of DNA homologous to human satellite III DNA in the chromosomes ofchimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus). Chromosoma 61, 345–358 (1977)Google Scholar
  68. Nielsen, J., Sillesen, I.: Incidence of chromosome aberration among 11,148 newborn children. Humangenetik 30, 1–12 (1975)Google Scholar
  69. Noel, B., Quack, B., Mottet, J., Nantois, Y., Dutrillaux, B.: Selective endoreduplication or branched chromosomes. Exptl. Cell Res. 104, 423–426 (1977)Google Scholar
  70. Ohno, S.: Sex chromosomes and sex-linked genes. Monogr. Endocrinol. 1 (whole issue) (1967)Google Scholar
  71. Paris Conference (1971), Birth Defects: Original Article Series. The National Foundation, Vol. 8, n°7. New York 1972Google Scholar
  72. Paris Conference (1971), Supplement (1975), Birth Defects: Original Article Series. The National Foundation, Vol. II, n°9. New York 1975Google Scholar
  73. Pearson, P.: The uniqueness of the human karyotype. In: Chromosome identification — Techniques and applications in biology and medicine, Caspersson, T., Zech, L. (eds.), pp. 141–145. Stockholm, New York, London: Nobel Foundation and Academic Press 1973Google Scholar
  74. Pearson, P., Estop, A., Garver, J. J., Dijksman, T. T., Wijnen, L. M. M., Meera Khan, P.: Evidence for the origin of human chromosome 2, 9 and 14 from primate-rodent cell hybrids. In: Chromosomes today, Vol. 6. Chapelle, A. de la, Sorsa, M. (eds.), pp. 201–207. Amsterdam: Elsevier/North-Holland Biomedical Press 1977Google Scholar
  75. Rumpler, Y., Dutrillaux, B.: Chromosome evolution in Malagasy lemurs. I. Chromosome banding studies in the genuses Lemur and Microcebus. Cytogenet. Cell Genet. 17, 268–281 (1976)Google Scholar
  76. Rumpler, Y., Dutrillaux, B.: Chromosomal evolution in Malagasy lemurs. III. Chromosome banding studies in the genus Lemur and the species Lemur catta. Cytogenet. Cell Genet. 21, 201–211 (1978)Google Scholar
  77. Singh, L.: Evolution of karyotypes in snakes. Chromosoma 38, 185–236 (1972)Google Scholar
  78. Sinha, A. K., Pathak, S., Nora, J. J.: A human family suggesting evidence for centric fission and stability of a telocentric chromosome. Hum. Hered. 22, 423–429 (1973)Google Scholar
  79. Stock, A. D., Hsu, T. C.: Evolutionary conservatism in arrangement of genetic material. A comparative analysis of chromosome banding between the Rhesus macaque (2n=42, 84 arms) and the African green monkey (2n=60, 120 arms). Chromosoma 43, 211–224 (1973)Google Scholar
  80. Sumner, A. T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)Google Scholar
  81. Sumner, A. T., Evans, H. J., Buckland, R. A.: A new technique for distinguishing between human chromosomes. Nature New Biol. 232, 31–33 (1971)Google Scholar
  82. Takaji, N., Sasaki, M.: A phylogenetic study of bird karyotype. Chromosoma 46, 91–120 (1974)Google Scholar
  83. Tantravahi, R., Miller, D. A., Dev, V. G., Miller, O. J.: Detection of nucleolus organizer in chromosomes of human, chimpanzee, gorilla, orangutan, and gibbon. Chromosoma 56, 15–27 (1976)Google Scholar
  84. Thelen, T. H., Abrams, D. J., Fisch, R. D.: Multiple abnormalities due to possible genetic inactivation in an X-autosome translocation. Am. J. Hum. Genet. 23, 410–418 (1971)Google Scholar
  85. Turleau, C., Grouchy, J. de: Caryotypes de l'homme et du chimpanzé. Comparaison de la topographie des bandes. Mécanismes évolutifs possibles. C.R. Acad. Sci. [D] (Paris) 274, 2355–2357 (1972)Google Scholar
  86. Turleau, C., Grouchy, J. de: New observations on the human and chimpanzee karyotypes. Identification of breakage points of pericentric inversions. Humangenetik 20, 151–157 (1973)Google Scholar
  87. Turleau, C., Grouchy, J. de, Klein, M.: Phylogénie chromosomique de l'homme et des primates hominiens (Pan troglodytes, Gorilla gorilla, et Pongo pygmaeus). Essai de reconstitution du caryotype de l'ancêtre commun. Ann. Genet. (Paris) 15, 225–240 (1972)Google Scholar
  88. Viegas-Péquignot, E., Couturier, J., Dutrillaux, B.: Comparison of DNA-replication chronology in chromosomes of chimpanzee and man. Primates 19, 209–213 (1978)Google Scholar
  89. Warburton, D., Firschein, I. L., Miller, D. A., Warburton, F. E.: Karyotype of the chimpanzee, Pan troglodytes, based on measurements and banding pattern: comparison to the human karyotype. Cytogenet. Cell Genet. 12, 453–461 (1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • B. Dutrillaux
    • 1
    • 2
  1. 1.Institut de ProgénèseC.N.R.S.ParisFrance
  2. 2.Département de Protection, Service de Protection SanitaireC.E.A.Fontenay-aux-RosesFrance

Personalised recommendations