, Volume 4, Issue 6, pp 199–208 | Cite as

Flight control in Drosophila by visual perception of motion

  • Karl Georg Götz


Apparent motion was simulated in the visual system of the tethered fruitfly Drosophila melanogaster by projecting moving stripe patterns onto stationary screens positioned in front of the lateral eye regions. The reactions of the animal were recorded under conditions of stationary flight in still air. It was found that visual stimulation modifies, independently, torque and thrust of the flight system. The responses appear suitable to counteract involuntary changes of direction and altitude in free flight.

Concerning the sensory system for visual flight control, the following was established:
  1. 1.

    Both eyes are functionally equal, and sensitive to pattern motion in any direction.

  2. 2.

    The motion detecting subunits possess a certain orientation on the eye surface, and discriminate between pattern motions that are progressive or regressive relative to this orientation.

  3. 3.

    Progressive and regressive stimuli elicit opposite responses in the flight system.

  4. 4.

    The subunit orientations are expected to group in at least two different directions that share a common line of symmetry with the internal eye structure.

  5. 5.

    A minimum of two contralateral and two ipsilateral nerve connections between the visual system and the motor system is required for the various torque and thrust responses.

Concerning the effect of pattern motion on the flight system, the following was found:
  1. 1.

    The motion detectors control only the magnitude of the force of flight. With the tethered animal in still air, the inclination of the force vector remains constant.

  2. 2.

    Consequently, the stroke plane and the wing pitch should be invariant to visual stimulation.

  3. 3.

    Possible influences of pattern motion on the wing-beat frequency were ruled out by frequency measurements.

  4. 4.

    The only major variables in wing articulation that respond to pattern motion are the wing-beat amplitudes on either side of the insect. In-flight photographs show that the difference and the sum of these amplitudes are, in fact, representative for the torque and the thrust of the flight system. The responses of the body posture may become important to flight performance at increased airspeed.


Comparative experiments with the housefly Musca domestica indicate that the principle of independent torque and thrust control by vision is adopted in at least two different species.


Torque Pattern Motion Flight Control Flight System Stroke Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, L. G., D. G. Keehn, and G. D. Mccann: Studies of motion detection by interneurons of the optic lobes and brain of the flies Calliphora phenicia and Musca domestica. (In preparation.)Google Scholar
  2. Bliss, J. C.: Visual information processing in the beetle Lixus. Published in D. K. Pollack et al. (eds.), Optical processing of information. Washington: Spartan Books 1963.Google Scholar
  3. Braitenberg, V. v., and C. Taddei Ferretti: Landing reactions of Musca domestica induced by visual stimuli. Naturwissenschaften 53, 155 (1966).Google Scholar
  4. Burkhardt, D., u. W. Kaiser: (In preparation).Google Scholar
  5. Campenhausen, C. v.: The ability of Limulus to see visual patterns. J. exp. Biol. 46, 557–570 (1967).Google Scholar
  6. Chadwick, L. E.: Insect flight. Published in K. D. Roeder (ed.), Insect physiology. New York: John Wiley & Sons 1953.Google Scholar
  7. Collett, T. S., and A. D. Blest: Binocular, directionally sensitive neurons, possibly involved in the optomotor response of insects. Nature (Lond.) 212, 1330–1333 (1966).Google Scholar
  8. Fermi, G., u. W. Reichardt: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963).Google Scholar
  9. Franceschini, N.: (Inpreparation).Google Scholar
  10. Götz, K. G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).Google Scholar
  11. — Die optischen Übertragungseigenschaften des Komplexauges von Drosophila. Kybernetik 2, 215–221 (1965).Google Scholar
  12. Götz, K. G. Behavioral analysis of the visual system of the fruitfly Drosophila. Pasadena: Proc. Symp. Information Processing in Sight Sensory Systems, p. 85–100 (1965).Google Scholar
  13. Hassenstein, B.: Kybernetik und biologische Forschung, p. 705–715. Handbuch der Biologie I/2. Frankfurt a. M.: Athenaion 1966.Google Scholar
  14. Hengstenberg, R., u. K. G. Götz: Der Einfluß des Schirmpigmentgehalts auf die Helligkeits und Kontrastwahrnehmung von Drosophila-Augenmutanten. Kybernetik 3, 276–285 (1967).Google Scholar
  15. Horridge, G. A.: Optokinetic memory in the locust. J. exp. Biol. 44, 255–261 (1966).Google Scholar
  16. Horridge, G. A., and D. C. Sandeman: Nervous control of optokinetic responses in the crab Carcinus. Proc. roy. Soc. B, 161, 216–246 (1964).Google Scholar
  17. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).Google Scholar
  18. Kunze, P.: Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44, 656–684 (1961).Google Scholar
  19. — Eye-stalk reactions of the ghost crab Ocypode. Published in R. F. Reiss (ed.), Neural theory and modeling, p. 293–306. Stanford: Stanford University Press 1964.Google Scholar
  20. Maynard, D. M., and H. C. Howland: Dynamics of the optomotor response in mantids. 9th Internat. Ethological Conference, Zürich, 1965.Google Scholar
  21. Mccann, G. D., and G. F. MacGinitie: Optomotor response studies of insect vision. Proc. roy. Soc. B, 163, 369–401 (1965).Google Scholar
  22. Mittelstaedt, H.: Zur Analyse physiologischer Regelsysteme. Verh, dtsch. Zool. Ges. Wilhelmshaven 8, 150–157 (1951).Google Scholar
  23. Nachtigall, W., and D. Wilson: Neuro-muscular control of dipteran flight. J. exp. Biol. 47, 77–97 (1967).Google Scholar
  24. Palka, J.: Diffraction and visual acuity of insects. Science 149, 551–553 (1965).Google Scholar
  25. Pringle, J. W. S.: Insect flight. Cambridge: Cambridge University Press 1957.Google Scholar
  26. — Locomotion: Flight. Published in M. Rockstein (ed.), The physiology of insecta. New York: Academic Press 1965.Google Scholar
  27. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Published in W. A. Rosenblith (ed.), Sensory communication, p. 303–317. New York: John Wiley & Sons 1961.Google Scholar
  28. — Quantum sensitivity of light receptors in the compound eye of the fly Musca. Cold Spr. Harb. Symp. quant. biol. 30, 505–515 (1965).Google Scholar
  29. Reichardt, W., V. v. Braitenberg u. G. Weidel: Auslösung von Elementarprozessen durch einzelne Lichtquanten im Fliegenauge. Kybernetik. (In the press).Google Scholar
  30. Schneider, G.: Zur spektralen Empfindlichkeit des Komplexauges von Calliphora. Z. vergl. Physiol. 39, 1–20 (1956).Google Scholar
  31. Schneider, P.: Vergleichende Untersuchungen zur Steuerung der Fluggeschwindigkeit bei Calliphora vicina. Z. wiss. Zool. 173, 114–173 (1965).Google Scholar
  32. Shepheard, P. R. B.: Optokinetic memory and the perception of movement by the crab Carcinus. Published in C. G. Bernhard (ed.), The functional organization of the compound eye. Oxford: Pergamon Press 1966.Google Scholar
  33. Smyth, T., and W. J. Yurkiewicz: Visual reflex control of indirect flight muscles in the sheep blowfly. Comp. Biochem. Physiol. 17, 1175–1180 (1966).Google Scholar
  34. Thorson, J.: Small-signal analysis of a visual reflex in locust, I and II. Kybernetik 3, 41–53 and 53–66 (1966).Google Scholar
  35. Varjú, D., u. W. Reichardt: Übertragungseigenschaften im Auswerte-System für das Bewegungssehen. II. Z. Naturforsch. 22b, 1343–1351 (1967).Google Scholar
  36. Vogel, S.: Flight in Drosophila. I. Flight performance in tethered flies. J. exp. Biol. 44, 567–578 (1966): II. Variations in stroke parameters and wing contour. J. exp. Biol. 46, 383–392 (1967).Google Scholar
  37. Weis-fogh, T.: Biology and physics of locust flight. VIII. J. exp. Biol. 41, 257–271 (1964).Google Scholar
  38. Wilson, D. M., and R. R. Hoy: Optomotor reaction, locomotry bias, and reactive inhibition in the milkweed bug Oncopeltus and the beetle Zophobas. Z. vergl. Physiol. 58, 136–152 (1968).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Karl Georg Götz
    • 1
  1. 1.Max-Planck-Institut für Biologie (Abteilung Reichardt)Tübingen

Personalised recommendations