, Volume 23, Issue 4, pp 235–258 | Cite as

The phenomenon of premature chromosome condensation: its relevance to basic and applied research

  • Karl Sperling
  • Potu N. Rao


Normally the chromosomes of eukaryotic cells are visible only for a brief period during cell division. However, when mitotic cells are fused with interphase cells, a “premature chromosome condensation” (PCC) is induced in the interphase cells. The morphology of the prematurely condensed chromosomes varies according to the position of the interphase cell in the cell cycle: G1-PCC are very long and single-stranded; G2-PCC have two chromatids which are still longer than prophase chromosomes; S-PCC have a “pulverized” appearance, which is obviously due to less condensation of chromatin at the sites of replication.

With this in mind, some older cytological findings can now be interpreted as premature condensation of whole chromosome sets, of single chromosomes, and of chromosomal regions.

Furthermore, the studies on PCC shed new light on the initiation of mitosis and on the condensation-decondensation cycle of chromosomes during interphase.

The application of this new method to mutagenesis and clinical cytogenetics is discussed.


Chromosomal Region Mitotic Cell Single Chromosome Interphase Cell Cytological Finding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Chromosomen eukaryoter Zellen sind normalerweise nur für den kurzen Augenblick der Zellteilung sichtbar. Fusioniert man jedoch Mitosezellen mit Interphasezellen, so wird in den letzteren eine “vorzeitige Chromosomenkondensation” (engl.: premature chromosome condensation, PCC) induziert. Die Morphologie der vorzeitig kondensierten Chromosomen hängt von dem Stadium des Zellcyclus ab, in dem sich die Interphasetehen befinden: G1-Chromosomen sind sehr lange, einsträngige Gebilde, G2-Chromosomen bestehen aus zwei Chromatiden, die noch länger als Prophasechromosomen sind, und S-Chromosomen erscheinen “pulverisiert”, was offensichtlich auf eine stärkere Entspiralisierung des Chromatins an den Replikationsstellen zurückzuführen ist.

Hiernach lassen sich heute einige ältere cytologische Befunde als vorzeitige Kondensation ganzer Chromosomensätze, einzelner Chromosomen und Chromosomenabschnitte interpretieren.

Darüber hinaus haben die Untersuchungen an den vorzeitig kondensierten Chromosomen neue Einblicke in die Initiation der Mitose und den Kondensations-Dekondensations-Cyclus der Chromosomen während der Interphase ergeben.

Die Anwendung dieser neuen Methode auf die Mutationsforschung und die klinische Cytogenetik wird diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, Y., Valladares, Y.: Differential staining of the cell cycle. Nature (Lond.) New Biol. 238, 279–280 (1972)Google Scholar
  2. Arrighi, F. E., Hsu, T. C.: Experimental alteration of metaphase chromosome morphology. Effect of Actinomycin D. Exp. Cell Res. 39, 305–308 (1965)Google Scholar
  3. Aula, P.: Electron-microscopic observations on Sendai virus-induced chromosome pulverization in HeLa cells. Hereditas (Lund) 65, 163–170 (1970)Google Scholar
  4. Aula, P., Saksela, E.: Early morphology of the chromosome damage induced by Sendai-virus. Hereditas (Lund) 55, 362–366 (1966)Google Scholar
  5. Aya, T., Sandberg, A. A.: Chromosome pulverization and RNA synthesis. J. nat. Cancer Inst. 47, 961 (1971)Google Scholar
  6. Bartsch, H. D.: Virus-induced chromosomal alterations in mammals and man. In: Chemical mutagenesis in mammals and man. Vogel, F., Röhrborn, G., Eds., Berlin-Heidelberg-New York: Springer 1970Google Scholar
  7. Benyesh-Melnick, M., Stich, H. F., Rapp, F., Hsu, T. C.: Viruses and mammalian chromosomes. III. Effect of herpes zoster virus on human embryonal lung cultures. Proc. Soc. exp. Biol. (N.Y.) 117, 546–549 (1964)Google Scholar
  8. Biles, A. R., Lüers, T., Sperling, K.: Multiple Fehlbildungen bei einem Neugeborenen mit einem D1-Ringchromosom. Med. Welt (N.F.) 20, 1771–1775 (1969)Google Scholar
  9. Bleier, H.: Verhalten der veschiedenen Kernkomponenten bei der Reduktionsteilung von Bastarden. Cellule 40, 87–111 (1930)Google Scholar
  10. Bobrow, M., Jones, L. F., Clarke, G.: A complex chromosomal rearrangement with formation of a ring 4. J. med. Genet. 8, 235–239 (1971)Google Scholar
  11. Boiron, M., Tanzer, J., Thomas, M., Hampe, A.: Early diffuse chromosome alterations in monkey kidney cells infected in vitro with herpes simplex virus. Nature (Lond.) 209, 737–738 (1966)Google Scholar
  12. Boué, J. G., Boué, A., Montagnier, L., Vigier, P.: Evolution chromosomique d'un clone de cellules humaines transformées par le virus du sarcome de Rous. C.R. Acad. Sci. (Paris), Sér. D 266, 178–181 (1968)Google Scholar
  13. Boué, J. G., Boué, A., Moorhead, P. S., Plotkin, S. A.: Altération chromosomiques enduites par le virus de la rubéole dans les cellules embryonnaires diploides humaines cultivée in vitro. C.R. Acad. Sci. (Paris), Sér. D 259, 687–690 (1964)Google Scholar
  14. Bross, K., Krone, W.: On the number of ribosomal RNA genes in man. Humangenetik 14, 137–141 (1972)Google Scholar
  15. Cantell, K., Saksela, E., Aula, P.: Virological studies on chromosome damage of HeLa cells induced by myxoviruses. Ann. Med. exp. Fenn. 44, 255–259 (1966)Google Scholar
  16. Cleveland, L. R.: The whole life cycle of chromosomes and their coiling systems. Trans. Amer. Phil. Soc. 39, 1–100 (1949)Google Scholar
  17. Comings, D. E.: Sex chromatin, nuclear size and the cell cycle. Cytogenetics 6, 120–144 (1967)Google Scholar
  18. DuPraw, E. J.: DNA and chromosomes. New York: Holt, Rinehart and Winston 1970Google Scholar
  19. Gripenberg, U.: The cytological behaviour of a human ring-chromosome. Chromosoma (Berl.) 20, 284–289 (1967)Google Scholar
  20. Grzeschik, K.-H.: Utilization of somatic cell hybrids for genetic studies in man. Humangenetik 19, 1–40 (1973)Google Scholar
  21. Gurdon, J. B.: Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. exp. Morph. 20, 401–414 (1968)Google Scholar
  22. Hancock, R.: Conservation of histones in chromatin during growth and mitosis in vitro. J. molec. Biol. 40, 457 (1969)Google Scholar
  23. Harnden, D. G.: Cytogenetic studies on patients with virus infections and subjects vaccinated against yellow fever. Amer. J. hum. Genet. 16, 204–213 (1964)Google Scholar
  24. Harris, H., Watkins, J. F., Ford, C. E., Schoefl, G. I.: Artificial heterokaryons of animal cells from different species. J. Cell Sci. 1, 1–30 (1966)Google Scholar
  25. Hertwig, R.: Über Korrelation von Zell-und Kerngröße und ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Zbl. 23, 49–62 (1903)Google Scholar
  26. Hittleman, W. N., Rao, P. N.: Premature chromosome condensation: I. Visualization of X-ray induced chromosome damage in interphase cells. Mutat. Res. 23, 251–258 (1974a)Google Scholar
  27. Hittleman, W. N., Rao, P. N.: Premature chromosome condensation: II. The nature of chromosome gaps produced by alkylating agents and ultraviolet light. Mutat. Res. 23, 259–266 (1974b)Google Scholar
  28. Holden, J. W. H., Mota, M.: Non-synchronised meiosis in binucleate pollen mother cells of an Avena hybrid. Heredity 10, 109–117 (1956)Google Scholar
  29. Hsu, T. C., Pathak, S., Shafer, D. A.: Induction of chromosome crossbanding by trating cells with chemical agents before fixation. Exp. Cell Res. 79, 484–487 (1973)Google Scholar
  30. Huberman, J. A., Riggs, A. D.: On the mechanism of DNA replication in mammalian chromosomes. J. molec. Biol. 32, 327–341 (1968)Google Scholar
  31. Ikeuchi, T.: Chromosome pulverization in chinese hamster multinucleate cells induced by bleomycin and cytochalasin B. Jap. J. Genet. 48, 391–405 (1973)Google Scholar
  32. Ikeuchi, T., Sandberg, A. A.: Chromosome pulverization in virus-induced heterokaryons of mammalian cells from different species. J. nat. Cancer Inst. 45, 951–963 (1970)Google Scholar
  33. Jacobsen, P., Mikkelsen, M., Rosleff, F.: A ring chromosome, diagnosed by quinacrine fluorescence as No. 9, in a mentally retarded girl. Clin. Genet. 4, 434–441 (1973)Google Scholar
  34. Johnson, R. T., Harris, H.: DNA synthesis and mitosis in fused cells. I. HeLa homokaryons. J. Cell Sci. 5, 603–624 (1969)Google Scholar
  35. Johnson, R. T., Rao, P. N.: Mammalian cell fusion: Induction of premature chromosome condensation in interphase nuclei. Nature (Lond.) 226, 717–722 (1970)Google Scholar
  36. Johnson, R. T., Rao, P. N.: Nucleo-cytoplasmic interactions in the achievement of nuclear synchrony in DNA synthesis and mitosis in multinucleate cells. Biol. Rev. 46, 97–155 (1971)Google Scholar
  37. Johnson, R. T., Rao, P. N., Hughes, S. D.: Mammalian cell fusion. III. A HeLa cell inducer of premature chromosome condensation active in cells from a variety of animal species. J. Cell Physiol. 77, 151–158 (1970)Google Scholar
  38. Kao, F. T., Puck, T. T.: Genetics of somatic mammalian cells: Linkage studies with human-Chinese hamster cell hybrids. Nature (Lond.) 228, 329–332 (1970)Google Scholar
  39. Kato, H., Sandberg, A. A.: Chromosome pulverization in human binucleate cells following colcemid treatment. J. Cell Biol. 34, 35–45 (1967)Google Scholar
  40. Kato, H., Sandberg, A. A.: Chromosome pulverization in human cells with micronuclei. J. nat. Cancer Inst. 40, 165–179 (1968a)Google Scholar
  41. Kato, H., Sandberg, A. A.: Cellular phase of chromosome pulverization induced by Sendai virus. J. nat. Cancer Inst. 41, 1125–1131 (1968b)Google Scholar
  42. Kato, H., Sandberg, A. A.: Chromosome pulverization in Chinese hamster cells induced by Sendai virus. J. nat. Cancer Inst. 41, 1117–1123 (1968c)Google Scholar
  43. Kihara, H., Lilienfeld, F.: Kerneinwanderung und Bildung syndiploider Mutterzellen bei dem F1 Bastard Triticum aegilopoides x Aegilops squarrosa. Jap. J. Genet. 10, 1–28 (1934)Google Scholar
  44. Kistenmacher, M. L., Punnett, H. H.: Comparative behaviour of ring chromosomes. Amer. J. hum. Genet. 22, 304–318 (1970)Google Scholar
  45. Klinger, H. P., Schwarzacher, H. G., Weiss, J.: DNA content and size of sex chromatin positive female nuclei during the cell cycle. Cytogenetics 6, 1–19 (1967)Google Scholar
  46. Lejeune, J., Lafourcade, J., Berger, R., Cruveiller, J., Rethoré, M.-O., Dutrillaux, B., Abonyi, D., Jérôme, H.: Le phénotype (Dr). Etude de trois cas de chromosome D en anneau. Ann. Génét. 11, 79–87 (1968)Google Scholar
  47. Lima-De-Faria, A.: Initiation of DNA synthesis at specific segments in the meiotic chromosomes of Melanoplus. Hereditas (Lund) 47, 674–694 (1961)Google Scholar
  48. Lima-De-Faria, A.: DNA replication and gene amplification in heterochromatin. In: Handbook of molecular cytology, Lima-De-Faria, A., Ed. Amsterdam-London: North Holland 1969Google Scholar
  49. MacKinnon, E., Kalnins, V. I., Stich, H. F., Yohn, D. S.: Viruses and mammalian chromosomes. VI. Comparative karyology and immunofluorescent studies on syrian hamster and human amnion cells infected with adenovirus type 12. Cancer Res. 26, 612–615 (1966)Google Scholar
  50. Matsui, S.: “Prophasing” as a possible cause of chromosome translocation in virus-fused cells. Nature (Lond.) New Biol. 243, 208–209 (1973)Google Scholar
  51. Matsui, S., Weinfeld, H., Sandberg, A. A.: Dependence of chromosome pulverization in virusfused cells on events in the G2 period. J. nat. Cancer Inst. 47, 401–411 (1971)Google Scholar
  52. Matsui, S., Weinfeld, H., Sandberg, A. A.: Fate of chromatin of interphase nuclei subjected to “Prophasing” in virus-fused cells. J. nat. Cancer Inst. 49, 1621–1630 (1972b)Google Scholar
  53. Matsui, S., Yoshida, H., Weinfeld, H., Sandberg, A. A.: Induction of prophase in interphase nuclei by fusion with metaphase cells. J. Cell Biol. 54, 120–132 (1972a)Google Scholar
  54. Mazia, D.: Synthetic activities leading to mitosis. J. Cell. comp. Physiol. 62, Suppl. 1, 123–140 (1963)Google Scholar
  55. Miles, C. P., O'Neill, F.: Prominent secondary constrictions in a pseudodiploid human cell line. Cytogenetics 5, 321–334 (1966)Google Scholar
  56. Miles, C. P., O'Neill, F.: 3H labeling patterns of permanent cell line chromosomes showing pulverization or accentuated secondary constrictions. J. Cell. Biol. 40, 553–561 (1969a)Google Scholar
  57. Miles, C. P., O'Neill, F.: Chromosome abnormalities induced in human cells by herpes virus type 2. Amer. Ass. Cancer Res. 10, No. 230 (1969b)Google Scholar
  58. Miller, O. J.: Autoradiography in human cytogenetics. In: Advances in human genetics, Harris, H., Hirschhorn, K., Eds. New York-London: Plenum Press 1970Google Scholar
  59. Moorhead, P. S., Defendi, V.: Asynchrony of DNA synthesis in chromosomes of human diploid cells. J. Cell. Biol. 16, 202–209 (1963)Google Scholar
  60. Nagl, W.: Chromosomen, Struktur, Funktion und Evolution. München: Goldmann 1972Google Scholar
  61. Nichols, W. W.: Interactions between viruses and chromosomes. In: Handbook of molecular cytology, Lima-De-Faria, A., Ed. Amsterdam-London: North Holland 1969Google Scholar
  62. Nichols, W. W., Aula, P., Levan, A., Heneen, W., Norrby, E.: Radioautography with tritiated thymidine in measles and Sendai virus-induced chromosome pulverizations. J. Cell. Biol. 35, 257–262 (1967)Google Scholar
  63. Nichols, W. W., Levan, A., Aula, P., Norrby, E.: Extreme chromosome breakage induced by measles virus in different in vitro systems. Preliminary communication. Hereditas (Lund) 51, 380–382 (1964)Google Scholar
  64. Nichols, W. W., Levan, A., Aula, P., Norrby, E.: Chromosome damage associated with the measles virus in vitro. Hereditas (Lund) 54, 101–118 (1965)Google Scholar
  65. Norrby, E., Levan, A., Nichols, W. W.: The correlation between the chromosome pulverization and other biological activities of measles virus preparations. Exp. Cell Res. 41, 483–491 (1965)Google Scholar
  66. Ockey, C. H.: The chemistry of the eukaryote chromosome. In: Chromosome identification — technique and applications in biology and medicine, Caspersson, T., Zech, L., Eds. New York-London: Academic Press 1973Google Scholar
  67. Östergren, G., Bajer, A.: Mitosis with undivided chromosomes. I. A study on living material. Chromosoma (Berl.) 12, 72–79 (1961)Google Scholar
  68. Okada, Y.: Factors in fusion of cells by HVJ. Curr. Top. Microbiol. Immunol. 48, 102–128 (1969)Google Scholar
  69. Painter, R. B.: Asynchronous replication of HeLa S3 chromosomal deoxyribonucleic acid. J. biophys. biochem. Cytol. 11, 485 (1961)Google Scholar
  70. Painter, R. B., Jermany, D. A., Rasmussen, R. E.: A method to determine the number of DNA replicating units in cultured mammalian cells. J. molec. Biol. 17, 47 (1966)Google Scholar
  71. Patil, S., Rao, P., Lubs, H.: Banding patterns in G1 and G2 chromosomes. Mammal. Chromosome Newsletter 13, 91 (1972)Google Scholar
  72. Pederson, T., Robbins, E.: Actinomycin-3H binding during the HeLa cell life cycle. J. Cell. Biol. 47, 155a (1970)Google Scholar
  73. Pederson, T., Robbins, E.: Chromatin structure and the cell division cycle. Actinomycin binding in synchronized HeLa cells. J. Cell. Biol. 55, 322–327 (1972)Google Scholar
  74. Pera, F., Wolf, U.: DNS-Replikation und Morphologie der X-Chromosomen während der Syntheseperiode bei Microtus agrestis. Chromosoma (Berl.) 22, 378–389 (1967)Google Scholar
  75. Poste, G.: Mechanisms of virus-induced cell fusion. Int. Rev. Cytol. 33, 157–252 (1972)Google Scholar
  76. Rao, P. N., Johnson, R. T.: Mammalian cell fusion: Studies on the regulation of DNA synthesis and mitosis. Nature (Lond.) 225, 159–164 (1970)Google Scholar
  77. Rao, P. N., Johnson, R. T.: Mammalian cell fusion: IV. Regulation of chromosome formation from interphase nuclei by various chemical compounds. J. Cell Physiol. 78, 217–224 (1971)Google Scholar
  78. Rao, P. N., Johnson, R. T.: Premature chromosome condensation: A mechanism for the elimination of chromosomes in virus-fused cells. J. Cell Sci. 10, 495–513 (1972a)Google Scholar
  79. Rao, P. N., Johnson, R. T.: Cell fusion and its application to studies on the regulation of the cell cycle. In: Methods in cell physiology, Prescott, D.M., Ed., Vol. V, pp. 75–126. New York: Academic Press 1972bGoogle Scholar
  80. Rao, P. N., Johnson, R. T.: Role of proteins in chromosome formation. J. Cell. Biol. 55, 212a (1972c)Google Scholar
  81. Rao, P. N., Johnson, R. T.: Induction of chromosome condensation in interphase cells. In: Advances in cell and molecular biology, DuPraw, E. J., Ed. Vol. 3. New York: Academic Press 1974aGoogle Scholar
  82. Rao, P. N., Johnson, R. T.: Regulation of cell cycle in hybrid cells. In: Control of proliferation in animal cells. Cold Spr. Harb. Monogr. (1974b, in press)Google Scholar
  83. Roizman, B.: Polykaryocytosis. Cold Spr. Harb. Symp. quant. Biol. 27, 327–340 (1962)Google Scholar
  84. Sanbe, M., Aya, T., Ikeuchi, T., Sandberg, A. A.: Electron microscopic study of fused cells, with special reference to chromosome pulverization. J. nat. Cancer Inst. 44, 1079–1089 (1970)Google Scholar
  85. Sandberg, A. A., Aya, T., Ikeuchi, T., Weinfeld, H.: Definition and morphologic features of chromosome pulverization: A hypothesis to explain the phenomenon. J. nat. Cancer Inst. 45, 615–623 (1970)Google Scholar
  86. Sandberg, A. A., Sofuni, T., Takagi, N., Moore, G. E.: Chronology and pattern of human chromosome replication. IV. Autoradiographic studies of binucleate cells. Proc. nat. Acad. Sci. (Wash.) 56, 105–110 (1966)Google Scholar
  87. Saksela, E.: Chromosomal changes in human cells after infection with SV 40. Hereditas (Lund) 52, 250–251 (1964)Google Scholar
  88. Saksela, E., Aula, P., Cantell, K.: Chromosomal damage of human cells induced by Sendai virus. Ann. Med. exp. Fenn. 43, 132–136 (1965)Google Scholar
  89. Schmid, W.: DNA replication patterns of human chromosomes. Cytogenetics 2, 175–193 (1963)Google Scholar
  90. Schmid, W., Smith, D. W., Theiler, K.: Chromatinmuster in verschiedenen Zelltypen und Lokalisation von Heterochromatin auf Metaphasechromosomen bei Microtus agrestis, Mesocricetus auratus, Cavia cobaya und beim Menschen. Arch. Klaus-Stift. Vererb.-Forsch. 40, 35–49 (1965)Google Scholar
  91. Schwartz, A. G., Cook, P. R., Harris, H.: Correction of a genetic defect in a mammalian cell. Nature (Lond.) New Biol. 230, 5–8 (1971)Google Scholar
  92. Shafer, D. A.: Banding human chromosomes in culture with Actinomycin D. Lancet 1973 I, 828–829Google Scholar
  93. Sperling, K., Rao, P. N.: Mammalian cell fusion: V. Replication behaviour of heterochromatin as observed by premature chromosome condensation. Chromosoma (Berl.) 45, 121–131 (1974)Google Scholar
  94. Stenman, S.: Depression of RNA synthesis in the prematurely condensed chromatin of pulverized HeLa cells. Exp. Cell Res. 69, 372–376 (1971)Google Scholar
  95. Stenman, S., Saksela, E.: Susceptibility of human chromosomes to pulverization induced by myxoviruses. Hereditas (Lund) 62, 323–338 (1969)Google Scholar
  96. Stenman, S., Saksela, E.: The relationship of Sendai virus-induced chromosome pulverization to cell cyclus in HeLa cells. Hereditas (Lund) 69, 1–14 (1971)Google Scholar
  97. Stich, H. F., Hsu, T. C., Rapp, F.: Viruses and mammalian chromosomes. I. Localization of chromosome aberrations after infection with herpes simplex virus. Virology 22, 439–455 (1964a)Google Scholar
  98. Stich, H. F., Van Hoosier, G. L., Trentin, J. J.: Viruses and mammalian chromosomes. Chromosome aberrations by human adenovirus type 12. Exp. Cell Res 34, 400–403 (1964b)Google Scholar
  99. Stoltz, D. B., Stich, H. F., Yohn, D. S.: Viruses and mammalian chromosomes. VII. The persistence of a chromosomal instability in regenerating, transplantated and cultured neoplasms induced by human adenovirus type 12 in syrian hamsters. Cancer Res. 27, 587–598 (1967)Google Scholar
  100. Stubblefield, E.: DNA synthesis and chromosomal morphology of chinese hamster cells cultured in media containing Colcemid. In: Cytogenetics of cells in culture, Harris, R. T. C., Ed.. New York-London: Academic Press 1964Google Scholar
  101. Stubblefield, E.: Mammalian chromosomes in vitro. XIX. Chromosome of Don-C, a chinese hamster fibroblast strain with a part of autosome 1b translocated to the Y chromosome. J. nat. Cancer Inst. 37, 799–817 (1966)Google Scholar
  102. Takagi, N., Aya, T., Kato, H., Sandberg, A. A.: Relation of virus-induced cell fusion and chromosome pulverization to mitotic events. J. nat. Cancer Inst. 43, 335–347 (1969)Google Scholar
  103. Taylor, J. H.: Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J. biophys. biochem. Cytol. 7, 455 (1960)Google Scholar
  104. Unakul, W., Johnson, R. T., Rao, P. N., Hsu, T. C.: Giemsa banding in prematurely condensed chromosomes obtained by cell fusion. Nature (Lond.) New Biol. 242, 106–107 (1973)Google Scholar
  105. Vogel, F., Röhrborn, G., Schleiermacher, E.: Chemisch-induziete Mutationen bei Säuger und Mensch. Naturwissenschaften 58, 131–141 (1971)Google Scholar
  106. Wiener, F., Székely, Chioreanu, L., Sebe, B., Kovács, V.: Virus-induzierte Chromosomen-aberrationen in Ehrlich-Aszites-Karzinomzellen (EAKZ) und gleichzeitige Milzreaktion der geimpften Mäuse. Arch. Geschwulstforsch. 35, 21–35 (1970)Google Scholar
  107. Wolf, U., Flinsbach, V. G., Böhm, R., Ohno, S.: DNA-Replikationsmuster bei den Riesen-Geschlechtschromosomen von Microtus agrestis. Chromosoma (Berl.) 16, 609–617 (1965)Google Scholar
  108. Yamanaka, T., Okada, Y.: Cultivation of fused cells resulting from treatment of cells with HVJ. I. Synchronization of the stages of DNA synthesis of nuclei involved in fused multinucleated cells. Biken's J. 9, 159–175 (1966)Google Scholar
  109. Yoshida, M. C.: A note on chromosome pulverization and nuclear fragmentation observed in a somatic mouse cell hybrid. Jap. J. Genet. 47, 447–449 (1972)Google Scholar
  110. Zakharov, A. F., Egolina, N. A.: Asynchrony of DNA replication and mitotic spiralization along heterochromatic portions of chinese hamster chromosomes. Chromosoma (Berl.) 23, 365–385 (1968)Google Scholar
  111. Zur Hausen, H.: Chromosomal changes of similar nature in seven established cell lines derived from the peripheral blood of patients with leukemia. J. nat. Cancer Inst. 38, 683–696 (1967)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Karl Sperling
    • 1
    • 2
  • Potu N. Rao
    • 1
    • 2
  1. 1.Institut für Genetik der Freien Universität BerlinBerlinGermany
  2. 2.Department of Developmental TherapeuticsThe University of Texas, M.D. Anderson Hospital and Tumor InstituteHouston

Personalised recommendations