Advertisement

Human Genetics

, Volume 77, Issue 2, pp 145–150 | Cite as

A Y/5 translocation in a 45,X male with cri du chat syndrome

  • Bernhard Weber
  • Werner Schempp
  • Ulrike Orth
  • Heide Seidel
  • Andreas Gal
Original Investigations

Summary

In a patient described as a 45,X male with cri du chat syndrome, combined cytogenetic and molecular methods revealed Y euchromatic material to be translocated onto the short arm of one chromosome 5, resulting in a chromosome der(5)(5qter→5p14::Yp11.31→Ypter). The translocated Y euchromatin comprised only the distal short arm including the pseudoautosomal region and the so-called deletion intervals 1 and 2. A review of 45,X males from the literature showed that; most of them carry a paternally transmitted Y/autosome translocations; resulting in various autosomal deletions. Depending on the segment concerned, the deletion led to congenital malformations.

Keywords

Internal Medicine Metabolic Disease Molecular Method Congenital Malformation Pseudoautosomal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affara NA, Ferguson-Smith MA, Tolmie J, Kwok K, Mitchell M, Jamieson D, Cooke A, Florentin L (1986) Variable transfer of Y-specific sequences in XX males. Nucleic Acids Res 14:5353–5373Google Scholar
  2. Bishop C, Guellaen G, Geldwerth D, Fellous M, Weissenbach J (1984) Extensive sequence homologies between Y and other human chromosomes. J Mol Biol 173:403–417Google Scholar
  3. de la Chapelle A, Page DC, Brown L, Kaski U, Parvinen T, Tippett PA (1986) The origin of 45,X males. Am J Hum Genet 38:330–340Google Scholar
  4. Cooke HJ (1976) Repeated sequences specific to human male. Nature 262:182–186Google Scholar
  5. Disteche CM, Brown L, Saal H, Friedman C, Thuline HC, Hoar DI, Pagon RA, Page DC (1986) Molecular detection of a translocation (Y;15) in a 45,X male. Hum Genet 74:372–377Google Scholar
  6. Feinberg AP, Vogelstein B (1983) A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13Google Scholar
  7. Feinberg AP, Vogelstein B (1984) Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267Google Scholar
  8. Forabosco A, Carratu A, Assuma M, de Pol A, Dutrillaux B, Cheli E (1977) Male with 45,X karyotype. Clin Genet 12:97–100Google Scholar
  9. Fraccaro M, Lindsten J, Klinger HP, Tiepolo L, Bergstrand CG, Herrlin KM, Livaditis A, Pehrson M, Tillinger KG (1966) Cytogenetical and clinical investigations in four subjects with anomalies of sexual development. Ann Hum Genet 29:281–304Google Scholar
  10. Gal A, Mücke J, Theile H, Wieacker PF, Ropers HH, Wienker TF (1985) X-linked dominant Charcot-Marie-Tooth disease: suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum Genet 70:38–42Google Scholar
  11. Gal A, Weber B, Neri G, Serra A, Müller U, Schempp W, Page DC (1987) A 45,X male with Y-specific DNA translocated onto chromosome 15. Am J Hum Genet 40:477–488Google Scholar
  12. Geldwerth D, Bishop C, Guellaen G, Koenig M, Vergnaud G, Mandel JL, Weissenbach J (1985) Extensive DNA sequence homologies between the human Y and the long arm of the X chromosome. EMBO J 4:1739–1743Google Scholar
  13. Guellaen G, Casanova M, Bishop C, Geldwerth D, Andre G, Fellous M, Weissenbach J (1984) Human XX males with Y single-copy DNA fragments. Nature 307:172–173Google Scholar
  14. Harper ME, Saunders GF (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ-hybridization. Chromosoma 83:431–439Google Scholar
  15. ISCN (1981) An international system for human cytogenetic nomenclature high-resolution banding (1981) Birth Defects: Original Article Ser 17, No 5; March of Dimes Birth Defects Foundation and Cytogenet Cell Genet 131, No 1Google Scholar
  16. Kinross J, Fraccaro M, Scappaticci S, Tiepolo L, Zuffardi O, Pawlowitzki IH, Jones KW (1978) BSu restriction of DNA from cases exhibiting sex-chromosome abnormalities. Cytogenet Cell Genet 20:59–69Google Scholar
  17. Koo GC, Wachtel SS, Krupen-Brown K, Mittl LR, Breg WR, Genel M, Rosenthal IM, Borgaonkar DS, Miller AD, Tantravahi R, Schreck RR, Erlanger BF, Miller OJ (1977) Mapping the locus of the H-Y gene on the human Y chromosome. Science 198:940–942Google Scholar
  18. Lau YF, Huang JC, Dozy AM, Kan YW (1984) A rapid screening test for antenatal sex determination. Lancet I:14–16Google Scholar
  19. Lo Curto F, Pucci E, Scappaticci S, Scotta S, Severi F, Burgio GB, Fraccaro M (1974) XO and male phenotype. Am J Dis Child 128:90–91Google Scholar
  20. McKay RDG, Bobrow M, Cooke HJ (1978) The identification of a repeated DNA sequence involved in the karyotype polymorphism of the human Y chromosome. Cytogenet Cell Genet 21:19–32Google Scholar
  21. Magenis RE, Casanova M, Fellous M, Olson S, Sheehy R (1987) Further cytologic evidence for Xp-Yp translocation in XX males using in situ hybridization with Y-derived probe. Hum Genet 75:228–233Google Scholar
  22. Maniatis T, Jeffrey A, Kleid DG (1975) Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci USA 72:1184–1188Google Scholar
  23. Maserati E, Waibel F, Weber B, Fraccaro M, Gal A, Pasquali F, Schempp W, Scherer G, Vaccaro R, Weissenbach J, Wolf U (1986) A 45,X male with a Yp/18 translocation. Hum Genet 74:126–132Google Scholar
  24. Ostrer H (1986) Analysis of Y chromosomal deletions and translocations using Y chromosomal DNA probes. Am J Hum Genet 39:A98 (abstr)Google Scholar
  25. Page DC, de Martinville B, Barker D, Wyman A, White R, Francke U, Bostein D (1982) Single-copy sequence hybridizes to polymorphic and homologous loci on human X and Y chromosomes. Proc Natl Acad Sci USA 79:5352–5356Google Scholar
  26. Page DC, Harper M, Love J, Botstein D (1984) Occurrence of a transposition from the X-chromosome long arm to the Y-chromosome short arm during evolution. Nature 311:119–123Google Scholar
  27. Perry P, Wolff S (1974) New Giemsa method for differential staining of sister chromatids. Nature 251:156–158Google Scholar
  28. Schempp W, Meer B (1983) Cytological evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63:171–174Google Scholar
  29. Schempp W, Weber B, Serra A, Neri G, Gal A, Wolf U (1985) 45,X male with evidence of a translocation of Y euchromatin onto chromosome 15. Hum Genet 71:150–154Google Scholar
  30. Seidel H, Miller K, Spoljar M, Stengel-Rutkowski S (1981) 45,X constitution in an H-Y antigen positive boy with partial monosomy 5p. Clin Genet 19:290–297Google Scholar
  31. Simmler MC, Rouyer F, Vergnaud G, Nyström-Lahti M, Ngo KY, de la Chapelle A, Weissenbach J (1985) Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317:692–697Google Scholar
  32. Šubrt I, Blehovà B (1974) Robertsonian translocation between the chromosome Y and 15. Humangenetik 23:305–309Google Scholar
  33. Tolksdorf M, Kunze J, Rossius H, Chiyo H (1980) Male infant with cat cry syndrome and apparent absence of the Y chromosome. Eur J Pediatr 133:293–296Google Scholar
  34. Turleau C, Chavin-Colin F, de Grouchy J (1980) A 45,X male with translocation of euchromatic Y chromosome material. Hum Genet 53:299–302Google Scholar
  35. Vergnaud G, Page DC, Simmler MC, Brown L, Rouyer F, Noel B, Botstein D, de la Chapelle A, Weissenbach J (1986) A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet 38:109–124Google Scholar
  36. Vignetti P, Chessa L, Bruni L, Ferrante E, Dallapiccola B (1977) Translocation Y/5 resulting in cri du chat syndrome. Clin Genet 12:319–322Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Bernhard Weber
    • 1
  • Werner Schempp
    • 1
  • Ulrike Orth
    • 2
  • Heide Seidel
    • 3
  • Andreas Gal
    • 2
  1. 1.Institut für Humangenetik und Anthropologie der UniversitätFreiburg i. Br.Federal Republic of Germany
  2. 2.Institut für Humangenetik der UniversitätBonnFederal Republic of Germany
  3. 3.Abteilung pädiatrische Genetik der Kinderpoliklinik der UniversitätMünchen 2Federal Republic of Germany

Personalised recommendations