Molecular and General Genetics MGG

, Volume 136, Issue 2, pp 167–180 | Cite as

Bacterial mutants able to partly suppress the effect of N mutations in bacteriophage λ

  • Françoise Brunel
  • John Davison


A method is described whereby bacterial mutants (sun) may be selected which are able to specifically suppress mutations in the N gene of bacteriophage λ. The sun mutations seem to be allelic to suA mutations, which suppress the polarity of nonsense codons, since suA mutants have all of the properties of sun mutants and both are genetically linked to the ilv gene. In the light of these experiments and recent data by others, models originally suggested to explain polarity in bacterial operons, are discussed with regard to their possible relevance to the mechanism of N action.


Codon Bacterial Mutant Nonsense Codon Bacterial Operon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhya, S., Gottesman, M., Crombrugghe, B. de: Release of polarity in E. coli by gene N of phage λ: termination and antitermination of transcription. Proc. nat. Acad. Sci. (Wash.) (in press)Google Scholar
  2. Beckwith, A.: Restoration of operon activity by suppressors. Biochim. biophys. Acta (Amst.) 76, 162 (1963)Google Scholar
  3. Brachet, P., Eisen, H., Rambach, A.: Mutations of coliphage λ affecting the expression of replicative functions O and P. Molec. gen. Genet. 108, 266 (1970)Google Scholar
  4. Brown, K. D.: Formation of aromatic amino acid pools in E. coli. K12. J. Bact. 104, 177 (1970)Google Scholar
  5. Clark, A. J.: The beginning of genetic analysis of recombination proficiency. J. cell Physiol. 70, (Suppl.) 1, 165 (1967)Google Scholar
  6. Court, D., Campbell, A.: Gene regulation in N mutants of λ bacteriophage. J. Virol 9, 238 (1972)Google Scholar
  7. Court, D., Sato, K.: Studies of a novel transducing variant of λ: dispensability of genes N and Q. Virology 39, 348 (1969)Google Scholar
  8. Davison, J.: Positive and negative control of transcription in bacteriophage λ. Brit. med. Bull. 23, No 3, 208 (1973)Google Scholar
  9. Davison, J., Brammar, W. J., Brunel, F.: Quantitative aspects of gene expression in a λ-trp fusion operon. Molec. gen. Genet. 130, 9 (1974)Google Scholar
  10. Echols, H.: Regulation of lytic development. “The bacteriophage lambda”. Cold Spr. Harb. Lab. 247 (1971)Google Scholar
  11. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., Lielausis, A.: Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spr. Harb. Symp. quant. Biol. 28, 374 (1963)Google Scholar
  12. Franklin, N. C.: The N operon of lambda: Extent and regulation as observed in fusions to the tryptophan operon of E. coli. “The bacteriophage lambda”. Cold Spr. Harb. Lab. 621 (1971)Google Scholar
  13. Franklin, N. C.: Altered reading of genetic signals fused to the N operon of bacteriophage λ: genetic evidence for modification of polymerase by N protein: J. molec. Biol. (in press)Google Scholar
  14. Friedman, D., Jolly, C., Mural, R.: Interference with the expression of the N gene function of phage λ in a mutant of E. coli. Virology 51, 216 (1973)Google Scholar
  15. Georgopoulos, C. P.: A bacterial mutation affecting N function. “The bacteriophage lambda”. Cold Spr. Harb. Lab. 639 (1971)Google Scholar
  16. Ghysen, A., Pironio, M.: Relationship between the N function of bacteriophage λ and host RNA polymerase. J. molec. Biol. 65, 259 (1972)Google Scholar
  17. Gottesman, M. E., Weisberg, R. A.: Prophage insertion and excision. “The bacteriophage lambda”. Cold Spr. Harb. Lab. 113 (1971)Google Scholar
  18. Gratia, J. P.: Studies on defective lysogeny due to chromosomal deletion in E. coli. Bikens J. 9, 77 (1966)Google Scholar
  19. Hiraga, S., Yanofsky, C.: Hyperlabile messenger RNA in polar mutants of the tryptophan operon of E. coli. J. molec. Biol. 72, 103 (1972)Google Scholar
  20. Howard-Flanders, P., Theriot, L.: Mutants of E. coli K12 defective in DNA repair and in genetic recombination. Genetics 53, 1137 (1972)Google Scholar
  21. Imamoto, F.: Evidence for premature termination of transcription of the tryptophan operon in polarity mutants of E. coli. Nature (Lond.) 228, 232 (1970)Google Scholar
  22. Imamoto, F.: Translation and transcription of the tryptophan operon. Prog. in nucl. Acid Res. and molec. Biol. 13, 339 (1973)Google Scholar
  23. Ito, J., Crawford, I. P.: Regulation of the enzymes of the tryptophan pathway in E. coli. Genetics 52, 1303 (1965)Google Scholar
  24. Kourilsky, P., Bourguignon, M., Gros, F.: Kinetics of viral transcription after induction of prophage “The bacteriophage lambda”. Cold Spr. Harb. Lab. 64 (1971)Google Scholar
  25. Kourilsky, P., Marcaud, L., Sheldrick, P., Luzzati, D., Gros, F.: Studies on the messenger RNA of bacteriophage λ, I: Various species synthesized early after induction of the prophage. Proc. nat. Acad. Sci. (Wash.) 61, 1013 (1968)Google Scholar
  26. Kumar, S. E., Bøvre, K., Guha, A., Hradecna, Z., Maher, V. M., Szybalski, W.: Orientation and control of λ transcription in E. coli phage. Nature (Lond.) 221, 823 (1969)Google Scholar
  27. Kuwano, M., Schlesinger, D., Morse, D. E.: Loss of dispensable endonuclease activity in relief of polarity by suA. Nature (Lond.) New Biol. 231, 214 (1971)Google Scholar
  28. Lennox, E. S.: Transduction of linked genetic character of the host by bacteriophage P1. Virology 1, 190 (1955)Google Scholar
  29. Luzzati, D.: Regulation of exonuclease synthesis: Role of N gene product and λ repressor. J. molec. Biol. 49, 515 (1970)Google Scholar
  30. Morse, D. E., Guertin, M.: Regulation of mRNA utilization and degradation by amino-acid starvation. Nature (Lond.) New Biol. 232, 165 (1971)Google Scholar
  31. Morse, D. E., Guertin, M.: Amber suA mutations which relieve polarity. J. molec. Biol. 63, 605 (1972)Google Scholar
  32. Morse, D. E., Primakoff, P.: Belief of polarity in E. coli by suA. Nature (Lond.) 226, 28 (1970)Google Scholar
  33. Morse, D. E., Yanofsky, C.: Polarity and the degradation of mRNA. Nature (Lond.) 224, 329 (1969)Google Scholar
  34. Parkinson, J. S.: Genetics of the left arm of the chromosome of bacteriophage lambda. Genetics 59, 311 (1968)Google Scholar
  35. Pironio, M., Ghysen, A.: A bacterial mutation which affects recognition of the N gene product of bacteriophage λ. Molec. gen. Genet. 108, 374 (1970)Google Scholar
  36. Portier, M., Marcaud, L., Cohen, A., Gros, F.: Mechanism of transcription in the N operon of bacteriophage lambda. Molec. gen. Genet. 117, 72 (1972)Google Scholar
  37. Radding, C. M., Echols, H.: The role of the N gene of phage in the synthesis of two phage-specified proteins. Proc. nat. Acad. Sci. (Wash.) 60, 707 (1968)Google Scholar
  38. Radding, C. M., Schreffler, D. C.: Regulation of exonuclease. II. Joint regulation of exonuclease and a new antigen. J. molec. Biol. 18, 215 (1966)Google Scholar
  39. Roberts, J. W.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168 (1969)Google Scholar
  40. Salka, A., Butler, B., Echols, H.: Genetic control of transcription during development of phage λ. Proc. nat. Acad. Sci. (Wash.) 58, 576 (1967)Google Scholar
  41. Signer, E. R.: Plasmid formation a new mode of lysogeny by phage λ. Nature (Lond.) 223, 158 (1969)Google Scholar
  42. Thomas, R., Leurs, C., Dambly, C., Parmentier, D., Lambert, L., Brachet, P., Lefebvre, N., Mousset, S., Porcheret, J., Spzirer, J., Wauters, D.: Isolation and characterization of new sus (amber) mutants of bacteriophage λ. Mutation Res. 4, 735 (1967)Google Scholar
  43. Wetekam, W., Ehring, R.: A role for the product of gene suA in restoration of polarity in vitro. Molec. gen. Genet. 124, 345 (1973)Google Scholar
  44. Yanofsky, C., Horn, V., Bonner, M., Stasiowski, S.: Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of E. coli. Genetics 69, 409 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Françoise Brunel
    • 1
  • John Davison
    • 1
    • 2
  1. 1.Department of Molecular BiologyUniversity of EdinburghEdinburghUK
  2. 2.Institute of VirologyUniversity of GlasgowUK

Personalised recommendations