Molecular and General Genetics MGG

, Volume 163, Issue 3, pp 257–275

Restriction enzyme analysis of mitochondrial DNAs of petite mutants of yeast: Classification of petites, and deletion mapping of mitochondrial genes

  • Alfred Lewin
  • Richard Morimoto
  • Murray Rabinowitz
  • Hiroshi Fukuhara
Article

Summary

We have analyzed the restriction digest patterns of the mitochondrial DNA from 41 cytoplasmic petite strains of Saccharomyces cerevisiae, that have been extensively characterized with respect to genetic markers. Each mitochondrial DNA was digested with seven restriction endonucleases (EcoRI, HpaI, HindIII, BamHI, HhaI, SalI, and PstI) which together make 41 cuts in grande mitochondrial DNA and for which we have derived fragment maps. The petite mitochondrial DNAs were also analyzed with HpaII, HaeIII, and AluI, each of which makes more than 80 cleavages in grande mitochondrial DNA. On the basis of the restriction patterns observed (i.e., only one fragment migrating differently from grande for a single deletion, and more than one for multiple deletions) and by comparing petite and grande mitochondrial DNA restriction maps, the petite clones could be classified into two main groups: (1) petites representing a single deletion of grande mitochondrial DNA and (2) petites containing multiple deletions of the grande mitochondrial DNA resulting in rearranged sequences. Single deletion petites may retain a large portion of the grande mitochondrial genome or may be of low kinetic cimplexity. Many petites which are scored as single continuous deletions by genetic criteria were later demonstrated to be internally deleted by restriction endonuclease analysis. Heterogeneous sequences, manifested by the presence of sub-stoichiometric amounts of some restriction fragments, may accompany the single or multiple deletions. Single deletions with heterogeneous sequences remain useful for mapping if the low concentration sequences represent a subset of the stoichiometric bands. Using a group of petites which retain single continuous regions of the grande mitochondrial DNA, we have physically mapped antibiotic resistance and mit- markers to regions of the grande restriction map as follows: C (99.3-1.4 map units)-OXI-1 (2.5-15.7)-OXI-2 (18.5-25)-P (28.1-34.2)-OXI-3 (32.2-61.2)-OII (60-62)-COB (64.6-80.8)-OI (80.4-85.7)-E (95-98.9).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avner, P.R., Coen, D., Dujon, B., Slonimski, P.P.: Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Molec. Genet. 125, 9–52 (1973)Google Scholar
  2. Bandlow, W., Schweyen, R.J., Thomas, D.Y., Wolf, K., Kaudewitz, F. (Eds.). Genetics, biogenesis and bioenergetics of Mitochondria. Berlin-New York: de Gruyter 1976Google Scholar
  3. Bandlow, W., Schweyen, R.J., Wolf, K., Kaudewitz, F. (Eds.): Mitochondira 1977. Genetics and biogenesis of mitochondria. Berlin-New York: de Gruyter 1977Google Scholar
  4. Bernardi, G., Prunell, A., Fonty, G., Kopecka, H., Strauss, H.: The mitochondrial genome of yeast: organization, evolution and the petite mutation. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds), pp. 175–184, Amsterdam: Elsevier/North-Holland 1976Google Scholar
  5. Bolotin-Fukuhara, M., Faye, G., Fukuhara, H.: Localization of some mitochondrial mutations in relation to transfer and ribosomal RNA genes in Saccharomyces cerevisiae. In: The genetic function of motochondrial DNA (Saccone, C., Kroon, A. M., eds.), pp. 243–250. Amsterdam: Elsevier/North-Holland 1976bGoogle Scholar
  6. Bolotin-Fukuhara, M., Faye, G., Fukuhara, H.: Temperature-sensitive respiratory deficient mitochondrial mutations: isolation and genetic mapping. Molec. gen. Genet. 152, 295–305 (1977)Google Scholar
  7. Bolotin-Fukuhara, M., Fukuhara, H.: Modified recombination and transmission of mitochondrial genetic markers in rho minus mutants of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 73, 4608–4612 (1976a)Google Scholar
  8. Bücher, T., Neupert, W., Sebald, W., Werner, S. (Eds.): Genetics and biogenesis of chloroplasts and mitochondria. Amsterdam: Elsevier/North-Holland 1976Google Scholar
  9. Casey, J., Cohen, M., Rabinowitz, M., Fukuhara, H., Getz, G.S.: Hybridization of mitochondrial transfer RNA's with mitochondrial and nuclear DNA of grande (wild type) yeast. J. molec. Biol. 63, 431–440 (1972)Google Scholar
  10. Casey, J., Gordon, P., Rabinowitz, M.: Characterization of mitochondrial DNA from grande and petite yeasts by renaturation and denaturation analysis and by transfer RNA hybridization: evidence for internal repetition or heterogeneity in mitochondrial DNA populations. Biochemistry 13, 1059–1067 (1974a)Google Scholar
  11. Casey, J., Hsu, H.J., Rabinowitz, M., Getz, G.S., Fukuhara, H.: Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J. molec. Biol. 88, 717–733 (1974b)Google Scholar
  12. Choo, K.B., Nagley, P., Lukins, H.B., Linnane, A.W.: Refined physical map of the mitochondrial genome of S. cerevisiae determined by analysis of an extended library of genetically and molecularly defined petite mutants. Molec. gen. Genet. 153, 279–288 (1977)Google Scholar
  13. Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.P., Bolotin-Fukuhara, M., Coen, D.: Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the rho+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics 76, 195–219 (1974)Google Scholar
  14. DiFranco, A., Sanders, J.P.M., Heyting, C., Borst, P., Slonimski, P.P.: Restriction enzyme analysis and physical mapping of mitochondrial DNA from petite mutants carrying a genetic marker for oligomycin or paromomycin resistance. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 291–304, Amsterdam: Elsevier/North-Holland, 1976Google Scholar
  15. Dujon, B., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., Slonimski, P. P., Weil, L.: Mitochondrial genetics. XI. Mutations at the mitochondrial locus (ω) affecting the recombination of mitochrondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 143, 131–165 (1976)Google Scholar
  16. Dujon, B., Slonimski, P.P., Weil, L.: Mitochondrial genetics. IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78, 415–437 (1974)Google Scholar
  17. Ephrussi, B.: Nucleo-cytoplasmic relations in micro-organisms. Oxford: Clarendon Press 1953Google Scholar
  18. Faye, G., Bolotin-Fukuhara, M., Fukuhara, H.: Mitochondrial mutations that affect transfer ribonucleic acid in Saccharomyces cerevisiae. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, T., Neupert, W., Sebald, W., Werner, S., eds.), pp. 547–556. Amsterdam: Elsevier/North-Holland Biomedical 1976bGoogle Scholar
  19. Faye, G., Fukuhara, H., Grandchamp, C., Lazowska, J., Michel, F., Casey, J., Getz, G.S., Locker, J., Rabinowitz, M., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Slonismki, P.P.: Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetitions of genes. Biochimie 55, 779–792 (1973)Google Scholar
  20. Faye, G., Kujawa, C., Dujon, B., Bolotin-Fukuhara, M., Wolf, K., Fukuhara, H., Slonimski, P.P.: Localization of the gene coding for the 16s ribosomal mitochondrial RNA using rho- mutants of Saccharomyces cerevisiae. J. molec. Biol. 99, 203–217 (1975)Google Scholar
  21. Faye, G., Kujawa, C., Fukuhara, H., Rabinowitz, M.: Mapping of the mitochondrial 16s ribosomal RNA gene and its expression in the cytoplasmic petite mutants of Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 68, 476–482 (1976a)Google Scholar
  22. Fukuhara, H., Bolotin-Fukuhara, M., Hsu, H.J., Rabinowitz, M.: Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants. Molec. gen. Genet. 145, 7–17 (1976)Google Scholar
  23. Gillham, N. W.: Genetic analysis of the chloroplast and mitochondrial genome. Ann. Rev. Genet. 8, 347–391 (1974)Google Scholar
  24. Gabain, A. von, Hayward, G.S., Bujard, H.: Physical mapping of the Hind III, Eco RI, Sal and Sma restriction endonuclease cleavage fragments from bacteriophage T5 DNA. Molec. gen. Genet. 143, 279–290 (1976)Google Scholar
  25. Gordon, P., Casey, J., Rabinowitz, M.: Characterization of mitochondrial deoxyribonucleic acid from a series of petite yeast strains by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Biochemistry 13, 1067–1075 (1974)Google Scholar
  26. Gordon, P., Rabinowitz, M.: Evidence for deletion and changed sequence in the mitochondrial deoxyribonucleic acid of a spontaneously generated petite mutant of Saccharomyces cerevisiae. Biochemistry 12, 116–123 (1973)Google Scholar
  27. Grivell, L.A., Moorman, A.F.M.: A structural analysis of the oxi-3 region on yeast mtDNA. In: Genetics and biogenesis of mitochondria. (Kaudewitz F., Schweyen, R.J., Bandlow, W., Wolf, K., eds.). Berlin: De Gruyter 1978Google Scholar
  28. Groot Obbink, D.J., Hall, R.M., Linnane, A.W., Lukins, H.B., Monk, B.C., Spithill, T.W., Trembath, M.R.: Mitochondrial genes involved in the determination of mitochondrial membrane proteins. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 163–173. Amsterdam: Elsevier/North-Holland 1976Google Scholar
  29. Heyting, C., Sanders, J.P.H.: The physical mapping of some genetic markers in the 21S ribosomal region of the mitochondrial DNA of yeast. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 273–280. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  30. Kotylak, Z., Slonimski, P.P.: Joint control ofcytochromes a and b by a unique mitochondrial DNA region comprising four genetic loci. In: The genetic function of mitochonorial DNA (Saccone, C., Kroon, A.M., eds), pp. 143–154. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  31. Kotylak, Z., Slonimski, P.P.: Fine structure genetic map and the mitochondrial DNA region controlling CoQH2: cytochrome-c-reductase. In: Genetics and biogenesis of mitochondria (Kaudewitz, F., Schweyen, R.J., Bandlow, W., Wolf, K., eds.) Berlin: De Gruyter 1977Google Scholar
  32. Lazowska, J., Jacq, G., Cebrat, S., Slonimski, P.P.: Fine structure map constructed by electron microscope and restriction endonucleases of the mitochondrial DNA segment confirming erythromycin resistance. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 325–336. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  33. Lazowska, J., Michel, F., Faye, G., Fukuhara, H., Slonimski, P.P.: Physical and genetic organization of petite and grande yeast mitochondrial DNA. II. DNA-DNA hybridization studies and buoyant density determinations. J. molec. Biol. 85, 393–410 (1974)Google Scholar
  34. Lazowska, J., Slonimski, P.P.: Electron microcopic analysis of circular repetitive mitochondrial DNA molecules from genetically characterized rho- mutants of Saccharomyces cerevisiae. Molec. gen. Genet. 146, 61–78 (1976)Google Scholar
  35. Lewin, A., Morimoto, R., Merten, S., Martin, N., Berg, P., Christianson, T., Levens, D., Rabinowitz, M.: Physical mapping of mitochondrial genes and transcripts in Saccharomyces cerevisiae. In: Genetics and biogenesis of mitochondria (Kaudewitz, F., Schweyen, R.J., Bandlow, W., Wolf, K., eds.) Berlin: De Gruyter 1977Google Scholar
  36. Linnane, A.W., Saunders, G.W., Gingold, E.B., Lukins, H.B.: Biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc. nat. Acad. Sci (Wash.) 59, 903–910 (1968)Google Scholar
  37. Locker, J., Rabinowitz, M., Getz, G.S.: Electron microscopic and renaturation kinetic analysis of mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J. molec. Biol. 88, 489–507 (1974a)Google Scholar
  38. Locker, J., Rabinowitz, M., Getz, G.S.: Tandem inverted repeats in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 71, 1366–1370 (1974b)Google Scholar
  39. Martin, N.C., Rabinowitz, M.: Transfer RNAs of yeast mitochondria. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, T., Neupert, W., Sebald, W., Werner, S., eds.), pp. 749–754. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  40. Martin, N., Rabinowitz, M., Fukuhara, H.: Yeast mitochondrial DNA specifies tRNA for 19 amino acids. Deletion mapping of the tRNA genes. Biochemistry 16, 4672–4677 (1977)Google Scholar
  41. Michaelis, G., Pratje, E.: Mapping of the two antimycin A resistance loci in Saccharomyces cerevisiae. Molec. gen. Genet. 156, 79–85 (1977)Google Scholar
  42. Michel, F., Lazowska, J., Faye, G., Fukuhara, H., Slonismki, P.P.: Physical and genetic organization of petite and grande yeast mitochondrial DNA. III. High resolution melting and reassociation studies. J. molec. Biol. 85, 411–431 (1974)Google Scholar
  43. Molloy, P.L., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria: analysis of deletion of mitochondrial antibiotic resistance markers in petite mutants of Saccharomyces cerevisiae. J. Bact. 122, 7–18 (1975)Google Scholar
  44. Morimoto, R., Lewin, A., Hsu, H.J., Rabinowitz, M., Fukuhara, H.: Restriction endonuclease analysis of mitochondrial DNA from grande and genetically characterized cytoplasmic petite clones of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 72, 3862–3872 (1975)Google Scholar
  45. Morimoto, R., Lewin, A., Mertin, S., Rabinowitz, M.: Restriction endonuclease mapping and analysis of grande and mutant yeast mitochondrial DNA. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, R., Neupert, W., Sebald, W., Werner, S., eds.), pp. 519–524. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  46. Morimoto, R., Lewin, A., Rabinowitz, M.: Restriction cleavage map of mitochondrial DNA from the yeast Saccharomyces cerevisiae. Nucl. Acid Res. 4, 2331–2351 (1977)Google Scholar
  47. Rabinowitz, M., Jakovcic, S., Martin, N., Hendler, F., Halbreich, A., Lewin, A., Morimoto, R.: Transcription and organization of yeast mitochondrial DNA. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 219–230. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  48. Saccone, C., Kroon, A.M. (Eds.): The genetic function of mitochondrial DNA. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  49. Sanders, J.P.M., Heyting, C., Borst, P.: The organization of genes in yeast mitochondrial DNA. I. The genes for large and small ribosomal RNA are far apart. Biochem. biophys. Res. Commun. 65, 699–707 (1975)Google Scholar
  50. Sanders, J.P.M., Heyting, C., Borst, P.: The variability of the mitochondrial genome of Saccharomyces strains. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, T., Neupert, W., Sebald, W., Werner, S., eds.), pp. 511–517. Amsterdam: Elsevier/North-Holland Biomedical 1976Google Scholar
  51. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchison, C.A. III, Slocombe, P.M., Smith, M.: Nucleotide sequence of bacteriophage ϕX174 DNA. Nature (Lond.) 265, 687–695 (1975)Google Scholar
  52. Schweyen, R.J., Steyer, A., Kaudewitz, F., Dujon, B., Slonismki, P.P.: Mapping of mitochondrial genes in Saccharomyces cerevisiae. Population and pedigree analysis of retention or loss of four genetic markers in rho- cells. Molec. gen. Genet. 146, 117–132 (1976b)Google Scholar
  53. Schweyen, R.J., Weiss-Brummer, B., Backhaus, B., Kaudewitz, F.: Localization of seven gene loci on a circular map of the mitochondrial genome of Saccharomyces cerevisiae. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 251–258. Amsterdam: Elsevier/North-Holland Biomedical 1976aGoogle Scholar
  54. Slonimski, P.P., Tzagoloff, A.: Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or co-enzyme QH2-cytochrome c reductase. Europ. J. Biochem. 61, 27–41 (1976)Google Scholar
  55. Smith, M.O., Wilcox, K.W.: A restriction enzyme from Haemophilus influenza. I. Purification and general properties. J. molec. Biol. 51, 379–391 (1970)Google Scholar
  56. Sriprakash, K.S., Molloy, P.L., Nagley, P., Lukins, H.B., Linnane, A.W.: Biogenesis of mitochondria. 41. Physical mapping of mitochondrial genetic markers in yeast. J. molec. Biol. 104, 485–503 (1976)Google Scholar
  57. Thomas, M., Davis, R.W.: Studies on the cleavage of bacteriophage lambda DNA with Eco RI restriction endonuclease. J. molec. Biol. 91, 315–328 (1975)Google Scholar
  58. Thomas, D., Wilkie, D.: Inhibition of mitochondrial synthesis in yeast by erythromycin cytoplasmic and nuclear factor controlling resistance. Genet. Res. 11, 33–41 (1968)Google Scholar
  59. Tzagoloff, A., Kaki, A., Needleman, R.B., Zulch, G.: Assembly of the mitochondrial membrane system cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase. J. biol. Chem. 250, 8236–8242 (1975)Google Scholar
  60. Tzagoloff, A., Floury, F., Akai, A.: Resolution of the mitochondrial genome. In: The Genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 155–161. Amsterdam: Elsevier/North-Holland Biomedical 1976aGoogle Scholar
  61. Tzagoloff, A., Foury, F., Akai, A.: Genetic determination of mitochondrial cytochrome b. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, T., Neupert, W., Sebald, W., Werner, S., eds.), pp. 419–426. Amsterdam: Elsevier/North-Holland Biomedical 1976bGoogle Scholar
  62. Wilkie, D., Saunders, G., Linnane, A.W.: Inhibition of respiratory enzyme synthesis in yeast by chloramphenicol: relationship between chloramphenicol tolerance and resistance to other antibacterial antibiotics. Genet. Res. 10, 199–203 (1967)Google Scholar
  63. Wilson, G.A., Young, F.E.: Isolation of a sequence-specific endonuclease (Bam I) from Bacillus amyloliquefaciens H. J. molec. Biol. 97, 123–125 (1975)Google Scholar
  64. Wolf, K., Dujon, B., Slonismki, P.P.: Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromoycin-resistance in Saccharomyces cerevisiae. Molec. gen. Genet. 125, 53–90 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Alfred Lewin
    • 1
    • 2
    • 3
    • 4
  • Richard Morimoto
    • 1
    • 2
    • 3
    • 4
  • Murray Rabinowitz
    • 1
    • 2
    • 3
    • 4
  • Hiroshi Fukuhara
    • 5
  1. 1.Department of MedicineThe University of Chicago Pritzker School of MedicineChicagoUSA
  2. 2.Department of BiochemistryThe University of Chicago Pritzker School of MedicineChicagoUSA
  3. 3.Department of BiologyThe University of Chicago Pritzker School of MedicineChicagoUSA
  4. 4.Franklin McLean Memorial Research InstituteChicagoUSA
  5. 5.Section de BiologieFoundation Curie Institut du RadiumOrsayFrance

Personalised recommendations