Development of genetic techniques and the genetic map of the yeast Saccharomycopis lipolytica
- 55 Downloads
- 45 Citations
Summary
Genetically useful strains of the hydrocarbon-utilizing yeast Saccharomycopsis lipolytica were developed through extensive inbreeding. Spore viability and the percentage of 4-spored asci were increased to the point where tetrad analysis was possible. Procedures for mutant isolation and scoring, maintenance of stocks, mating, sporulation, complementation, tetrad and random spore analysis have been developed for these inbred strains. Sixty seven mutations in fiftyeight genes have been isolated and utilized in mapping studies. Twenty-two cases of linkage have been detected among the 278 gene pairs investigated. Six linkage fragments have been established and a few genes ordered in these fragments. No centromere, linked markers have yet been detected. Evidence for gene conversion, mitotic recombination and diploidization in S. lipolytica is presented.
Keywords
Recombination Ascus Gene Pair Mapping Study Gene ConversionPreview
Unable to display preview. Download preview PDF.
References
- Arandjelovic, D., Alacevic, M., Adamic, J.: Induction of respiratory deficient mutants in Candida lipolytica by means of different mutagens, p. 476. In: Abstracts of Vth Intern. Ferm. Symp. Edited by H. Dellweg. Berlin: Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie 1976Google Scholar
- Bassel, J., Hambright, P., Mortimer, R., Bearden, A.J.: Mutant of the yeast Saccharomycopsis lipolytica that accumulates and excretes protoporphyrin IX. J. Bact. 123, 118–122 (1975)Google Scholar
- Bassel, J., Mortimer, R.: Genetic analysis of mating type and alkane utilization in Saccharomycopsis lipolytica. J. Bact. 114, 894–896 (1973)Google Scholar
- Bassel, J., Warfel, J., Mortimer, R.: Complementation and genetic recombination in Candida lipolytica. J. Bact. 108, 609–611 (1971)Google Scholar
- Bostock, C.J.: DNA Synthesis in the fission yeast Schizosaccharomyces pombe. Exp. Cell Res. 60, 16–26 (1970)Google Scholar
- Byers, B., Goetsch, L.: Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 72, 5056–5060 (1975)Google Scholar
- Case, M.E., Giles, N.H.: Allelic recombination in Neurospora: tetrad analysis of a three-point cross within the par-2 locus. Genetics 49, 529–540 (1964)Google Scholar
- Emerson, S.: Linkage and recombination at the chromosome level, p. 289. In: Genetic organization, Vol. I. Edited by E.W. Caspar and A.W. Ravin. New York: Academic Press, 1969Google Scholar
- Esser, K., Stahl, U.: Cytological and genetic studies of the life cycle of Saccharomycopsis lipolytica. Molec. gen. Genet. 146, 101–106 (1976)Google Scholar
- Ferreira, N.P.: The production of citric acid by an alkane-negative mutant of Candida lipolytica, p. 406. In: Abstracts of Vtb Intern. Ferm. Symp. Edited by H. Dellweg. Berlin: Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie 1976Google Scholar
- Flores da Cunha, M.: Mitotic mapping of Schizocaccharomyces pombe. Genet. Res. 16, 127–144 (1970)Google Scholar
- Gaillardin, C.M., Charoy, V., Heslot, H.: A study of copulation, sporulation and meiotic segregation in Candida lipolytica. Arch. Microbiol. 92, 69–83 (1973)Google Scholar
- Gaillardin, D., Fournier, P., Sylvestre, G., Heslot, H.: Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J. Bact. 125, 48–57 (1976)Google Scholar
- Herman, A.I.: Mating responses in Candida lipolytica. J. Bact. 107, 371 (1971)Google Scholar
- McCully, K., Forbes, E.: The use of p-flourophenyalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965)Google Scholar
- Mortimer, R.K., Hawthorne, D.C.: Genetic mapping in Saccharomyces IV. Mapping of temperature sensitive genes and use of disomic strains in localizing genes. Genetics 74, 33–54 (1973)Google Scholar
- Mortimer, R.K., Hawthorne, D.C.: Genetic mapping in yeast, pp. 221–233. In: Methods in cell biology, Vol. XI Edited by D.M. Prescott. New York: Academic Press, 1975Google Scholar
- Mortimer, R.K., Tavares, F.C.: Genetic mapping in yeast, pp. 572–574. In: Microbiology, Publ. A.S.M., Wash. D.C.: 1976Google Scholar
- Morzycka, E., Sawnor-Korszynska, D., Paszewski, A., Grabski, J., Raczynska-Bojanowska, K.: Methionine overproduction by Saccharomycopsis lipolytica. Appl. and Envir. Microbiol. 32, 125–130 (1976)Google Scholar
- Nakai, S., Mortimer, R.K.: Studies of the genetic mechanism of radiation-induced mitotic-segregation in yeast. Molec. gen. Genetics 103, 329–338 (1969)Google Scholar
- Ogrydziak, D.M., Demain, A.L., Tannenbaum, S.R.: Regulation of extracellular protease production in Candida lipolytica. Biochim. Biophys. Acta (Amst.) 497, 525–538 (1977)Google Scholar
- Ogrydziak, D.M., Mortimer, R.K.: Genetics of extracellular protease production in Saccharomycopsis lipolytica. Genetics 87, 621–632 (1977)Google Scholar
- Tabuchi, T.: Properties of two new enzymes for metabolism of oddcarbon n-alkanes or propionyl-coA in Candida lipolytica, p. 150. In: Abstracts of Vtb Intern. Ferm. Symp. Edited by H. Dellweg, Berlin: Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie, 1976Google Scholar
- Thuriaux, P.: Is recombination confined to structural genes on the eukaryotic genome? Nature (Lond.) 268, 460–462 (1977)Google Scholar
- Whitney, P., Hall, B.D.: Fed. Proc. Am. Soc. Exp. Biol. 33, 128aa (1974)Google Scholar
- Wickerham, L.J., Kurtzman, C.P., Herman, A.I. Sexuality in Candida lipolytica, pp. 81–92. In: Recent trends in yeast research. Chazy, New York: Miner Institute, 1969Google Scholar
- Wickerham, L.J., Kurtzman, C.P., Herman, A.I.: Sexual reproduction in Candida lipolytica. Science 167, 1141 (1970)Google Scholar
- Yarrow, D.: Four new combinations in yeast. Antonie van Leeuwanhoek, J. Microbiol. Serol. 38, 357–360 (1972)Google Scholar