Advertisement

Molecular and General Genetics MGG

, Volume 169, Issue 2, pp 157–161 | Cite as

Mutants of Volvox carteri affecting nitrogen assimilation

  • Robert J. Huskey
  • Clay F. Semenkovich
  • Barbara E. Griffin
  • Patricia O. Cecil
  • Ann M. Callahan
  • Kenneth V. Chace
  • David L. Kirk
Article

Summary

Three genes of Volvox carteri f. nagariensis have been identified which affect nitrogen assimilation. Mutants in two unlinked genes, nitA and nitC, were isolated as chlorate resistant and they exhibit no measureable nitrate reductase activity. The mutant in the nitB gene which is linked to nitA has slightly reduced levels of nitrate reductase activity and grows poorly on the nitrate concentration in standard medium but grows normally if the level of nitrate is increased. All of the mutants utilize ammonia, urea or nitrite for growth.

Keywords

Nitrogen Ammonia Nitrate Urea Nitrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åberg, B.: On the mechanism of the toxic action of chlorate and some related substances upon young wheat plants. Kungl. Lautbrukshösgksolans Ann. 15, 37–107 (1947)Google Scholar
  2. Arst, H.N., MacDonald, D.W., Cove, D.J.: Molybdate metabolism in Aspergillus nidulans. I Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Mol. Gen. Genet. 108, 129–145 (1970)Google Scholar
  3. Barea, J.L., Cardenas, J.: The nitrate-reducing enzyme system of Chlamydomonas reinhardii. Arch. Microbiol. 105, 21–25 (1975)Google Scholar
  4. Barea, J.L., Maldonado, J.M., Cardenas, J.: Further characterization of nitrate and nitrite reductases from Chlamydomonas reinhardii. Physiol. Plant. 36, 325–332 (1976)Google Scholar
  5. Barea, J.L., Sosa, F., Cardenas, J.: Cyanide inactivation of Chlamydomonas reinhardii nitrate reductase under reducing conditions. Z. Pflanzenphysiol. 79, 237–245 (1976)Google Scholar
  6. Coddington, A.: Biochemical studies on the nit mutants of Neurospora crassa. Mol. Gen. Genet. 145, 195–206 (1976)Google Scholar
  7. Cove, D.J.: Control of gene action in Aspergillus nidulans. Proc. R. Soc. Lond. [Biol.] 176, 267–275 (1970)Google Scholar
  8. Cove, D.J.: Chlorate toxicity in Aspergillus nidulans. Mol. Gen. Genet. 146, 147–159 (1976a)Google Scholar
  9. Cove, D.J.: Chlorate toxicity in Aspergillus nidulans: the selection and characterization of chlorate resistant mutants. Heredity 36, 191–203 (1976b)Google Scholar
  10. Garrett R.H., Cove, D.J.: Formation of NADPH-nitrate reductase activity in vitro from Aspergillus nidulans niaD and cnx mutants. Mol. Gen. Genet. 149, 179–186 (1976)Google Scholar
  11. Garrett, R.H., Nason, A.: Further purification and properties of Neurospora nitrate reductase. J. Biol. Chem. 244, 2870–2882 (1969)Google Scholar
  12. Griffin, B., Huskey, R.J.: Genetic control of differentiation in Volvox. Genetics 77, s27 (1974)Google Scholar
  13. Herrera, J., Paneque, A., Maldonado, J.M., Barea, J.L., Losada, M.: Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardii. Biochem. Biophys. Res. Commun. 48, 996–1003 (1972)Google Scholar
  14. Hudock, G.A., Rosen, H.: Formal genetics of Chlamydomonas. Bot. Monographs 12, 29–48 (1976)Google Scholar
  15. Huskey, R.J., Cecil, P.O.: Genetic control of the sexual response in Volvox. Genetics 80, s44 (1975)Google Scholar
  16. Huskey, R.J., Griffin, B.E., Cecil, P.O., Callahan, A.M.: A preliminary genetic investigation of Volvox carteri Genetics (accepted) (1979)Google Scholar
  17. Kirk, D.L., Kirk, M.M.: Protein synthesis in Volvox carteri f. nagariensis. Dev. Biol. 50, 413–427 (1976)Google Scholar
  18. Kirk, M.M., Kirk, D.L.: Carrier-mediated uptake of arginine and urea by Volvox carteri f. nagariensis. Pl. Physiol. 61, 549–555 (1978)Google Scholar
  19. Kochert, G., Yates, I.: Purification and partial characterization of glycoprotein sexual inducer from Volvox carteri. Proc. Natl. Acad. Sci. U.S.A. 71, 1211–1214 (1974)Google Scholar
  20. MacDonald, D.W., Cove, D.J., Coddington, A.: Cytochrome-c reductases from wild-type and mutant strains of Aspergillus nidulans. Mol. Gen. Genet. 128, 187–199 (1974)Google Scholar
  21. Margolis-Kazan, H., Blamire, J.: The DNA of Volvox carteri: a biophysical and biosynthetic characterization. Cytobios 15, 201–216 (1976)Google Scholar
  22. Pickett-Heaps, J.D.: Some ultrastructural features of Volvox, with particular reference to the phenomenon of inversion. Planta 90, 174–190 (1970)Google Scholar
  23. Schloemer, R.H., Garrett R.H.: Nitrate transport in Neurospora crassa. J. Bacteriol. 118, 259–269 (1974)Google Scholar
  24. Sessoms, A.H., Huskey, R.J.: Genetic control of development in Volvox: isolation and characterization of morphogenetic mutants. Proc. Natl. Acad. Sci. U.S.A. 70, 1335–1338 (1973)Google Scholar
  25. Starr, R.C.: Control of differentiation in Volvox. Dev. Biol., Suppl. 4, 59–100 (1970)Google Scholar
  26. Starr, R.C.: Meiosis in Volvox carteri f. nagariensis. Arch. Protistenk. 117, 187–191 (1975)Google Scholar
  27. Starr R.C., Jaenicke, L.: Purification and characterization of the hormone initiating sexual morphogenesis in Volvox carteri f. nagariensis. Proc. Natl. Acad. Sci U.S.A. 71, 1050–1054, (1974)Google Scholar
  28. Toby, A.L., Kemp, C.L.: Nitrate reductase mutants in Eudorina elegans. J. Phycol. 13, 368–372 (1977)Google Scholar
  29. Viamontes, G.I., Kirk, D.L. Cell shape changes and the mechanism of inversion in Volvox. J. Cell Biol. 75, 719–730 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Robert J. Huskey
    • 1
  • Clay F. Semenkovich
    • 1
  • Barbara E. Griffin
    • 1
  • Patricia O. Cecil
    • 1
  • Ann M. Callahan
    • 1
  • Kenneth V. Chace
    • 1
  • David L. Kirk
    • 1
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations